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Abstract. Turn-taking behaviour is simulated with a coupled agents
system. Each agent is modelled as a mobile robot with two wheels. A
recurrent neural network is used to produce the motor outputs and to
hold the internal dynamics. Agents are developed to take turns on a two
dimensional arena by causing the network structures to evolve.
Turn-taking is established using either regular or chaotic behaviour of
the agents. It is found that chaotic turn-takers are more sensitive to the
adaptive inputs from the other agent. On the other hand, regular turn-
takers are comparatively insensitive to noisy inputs due to their restricted
dynamics. From various observations, including turn-taking with virtual
agents, we claim that the chaotic turn-taking agents become less robust
when coping with virtual agents but at the same time, those agents
are more adaptable to each other than the regular turn-taking agents.
All these findings are discussed and compared with Trevarthen’s double
monitor experiments.

1 Introduction

Intersubjectivity is a term used in psychology and philosophy to describe the
sharing of mental states and intentions with others. Trevarthen was the first
person to notice its importance [11]. This intersubjectivity is strongly connected
to social behaviour between two or more entities. Interacting socially with others
requires more than mere interaction and synchronization of actions but coordi-
nated behaviour of entities that have rich dynamics. There are many ways to
understand psychological phenomena by computer simulations and robot exper-
iments rather than by studying human behaviour directly [2, 10].

By conceiving couplings between agents with rich internal dynamics, we
should develop new ways of understanding their dynamics [4–6]. We general-
ize from turn-taking behaviour to autonomous role-changing, such as games of
tag among children, and investigate the generic underlying mechanisms using
the dynamical systems method. Therefore this study focuses on different per-
spectives to the fixed role-playing games (e.g. a pursuit-evasion game [1]). Here
we take turn-taking as the simplest example that shows diversity of dynamics.
It is necessary for turn-taking behaviour to autonomously exchange roles along
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with the context constructed by the entities’ behaviours, e.g., chaser-evader and
speaker-listener. When taking turns in a two-person conversation people usu-
ally avoid overlapping or interrupting each other’s speech without setting any
explicit cue to switch speakers. Some cues for this include eye contact and the
detection of intonation changes. It is considered that turn-taking is established
by coordination between predictions and the internal neural net that computes
the output from inputs. Thus, the coupling between agents means a coupling of
anticipatory systems with intrinsic dynamics.

By introducing the agent architecture, evolutionary algorithm and the turn-
taking environments, we explore three topics in our simulations. They are dy-
namics repertoire, noise-driven turn-taking behaviour and turn-taking with vir-
tual agents. The present paper is a continuation of the work of the previous
study [8]. The basic model set-up is the same, but here we have a greater variety
of turn-taking behaviours, which enables us to perform experiments described
in this paper.

2 The model

We modelled a playing tag game in which the role of chaser, or evader, is not
given to players in advance. There are some game models in which the roles are
not predefined [9, 3]. Reynolds showed that the abilities of chasing and evading
also evolve simultaneously by genetic programming in a game of tag, which is a
symmetrical pursuit-evasion game. The variety of the behaviour of agents adapt-
ing to their environments is worth noting. In Reynolds’ game, switching between
evader and chaser is predefined to happen when both agents come into physical
contact. The difference between Reynolds’ model and ours is the spontaneous
emergence of behaviour. Whether an agent plays the role of a chaser or an evader
will be dynamically determined in our model. On the other hand, Di Paolo mod-
elled and studied social coordination with agents that interact acoustically. To
avoid misperceiving the acoustical signals, their emission timings were entrained
in an anti-phase state; the resulting behaviour resembles a turn-taking process.

There is a difference between Di Paolo’s turn-taking and ours. Both turn-
taking behaviours are established by the coordination of agents through the his-
tory of their interactions. Di Paolo modelled turn-taking as a result of anti-phase
signals to avoid signal interference; however, we modelled turn-taking behaviour
as a result of coupling between richer internal dynamics. Therefore, in this paper
we pay more attention to the diversity of behaviour patterns.

2.1 Game and Environment

Here each agent has a circular body of radius R, with two diametrically opposed
motors (Fig. 1). The motors can move the agent backwards and forward in a
two-dimensional unstructured and unlimited arena. The motion is described by
the following equation of motion of an agent’s heading angle (θ) and the velocity
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Fig. 1. Left: a schematic view of the mobile robot with two wheels (actuators). It
computes the forward force vector and the torque strength from the force vector (f1, f2)
on each actuator. Right: Two mobile robots interact to perform turn-taking behaviour
by sensing each other’s position, relative distance and heading angle. It is robot A’s
turn when A enters B’s rear side (RS) position. The shape of this RS is parameterized
by r and φ.

(v) in that direction.

Mv̇ + D1v + f1 + f2 = 0, (1)
Iθ̈ + D2θ̇ + τ(f1, f2) = 0, (2)

where f1 and f2 are the forward driving force, and τ denotes the torque. Each
agent has a heading angle, which is denoted by θ. D1 and D2 express the resis-
tance coefficients, and the agents have mass (M) and inertia (I). We solve the
equations iteratively using the Runge-Kutta method. At each time step, agents
compute the forces from the inputs using the internal neural nets described
below.

We assume there is no collision between agents because we focus on the inter-
nal states of the agents that generate turn-taking. Two agents try to coordinate
the turn-taking behaviour; each trying to get behind the other. Because they
cannot get behind each other simultaneously the turn-taking cannot be achieved
if both agents play chaser. Naturally, if both agents play evader, mutual turn-
taking cannot be achieved, either. Therefore, it is necessary to have spontaneous
symmetry break-down so that one plays the role of chaser and the other plays
the role of evader. However, mere symmetry-breaking is not sufficient; temporal
role-changing is also required. By using recurrent neural networks, we focus on
how the turn-taking dynamics are self-organized.

2.2 Agents

We designed the agents to have recurrent neural networks (Fig. 2). Inputs to an
agent are the other agent’s position, distance and heading angle, relative to the
agent. They move freely in the arena using two motors, the outputs of which are
computed at every game time-step. The agent predicts the other’s next relative
position, assigned three output neurons. The dynamics of the recurrent neural
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Fig. 2. Recurrent neural networks with three layers. Input nodes receive the other
agent’s relative position. The last layer consists of three types of nodes: context, pre-
diction and motor output. Context nodes feed back to the input layer. Prediction nodes
output the other’s relative position in the next time-step. Motor nodes output the force
vector, f1 and f2.

network are expressed by the following equations at each time-step t,

hj(t) = g(
∑

i

wijyi(t) +
∑

l

w′ljcl(t− 1) + bj1), (3)

zk(t) = g(
∑

j

ujkhj(t) + bj2), (4)

cl(t) = g(
∑

l

u′jlhj(t) + bj3), (5)

g(x) = 1/(1 + exp−x), (6)

where yi, zk, hj and cl represent input, output, hidden and context nodes, re-
spectively. The respective number of nodes in these layers is set to (I, K, J, L) =
(3, 5, 10, 3) throughout this paper. The symbols wij , ujk, w′lj and u′jl denote the
weights from input to hidden, hidden to output, context to hidden, and hidden
to context neurons, respectively, while the parameter b gives a bias node. In this
paper, we do not treat the results of predictions, which are discussed in [7]. This
network architecture evolves using a genetic algorithm, which is explained in the
following section.

3 Evolutionary design of neural architecture

We update the weights according to turn-taking performance. In practice, the
weight set of the neural networks has a vector representation of the real weight
values, which evolve using a genetic algorithm (GA).

We use a GA to evolve two separate populations, to avoid agents of a single
genotype from dominating, in which case turn-taking is played among genetically
close agents. As a result, a player has to play against itself, which we want to
avoid. Each population contains P individuals. The performance of all P 2 paired
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agents from the separated populations are evaluated at each generation. Agents
that can equally exchange turns are evaluated to have greater fitness. At first,
individuals in each population are initialized with random weight values. Then
we calculate the fitness of each individual, based on its performance.

The highest value is given when both agents take their turn alternately and
the agents can predict each other’s behaviour. A one-sided (i.e. role-fixed) be-
haviour is associated with the lower fitness values. Practically, the fitness of an
agent a from a population (A) against an agent b from the other population
(B) is calculated as follows. Below, we define a total fitness F as the sum of
two fitnesses associated with prediction and turn-taking, respectively. When an
agent gets behind, the other agent has, by definition, its turn and the rear scope
is specified as RS, which is parameterized by two parameters r and φ (see Fig.
1). The agent in this scope is said to be having its turn and is being rewarded. A
spatial position of the b-th agent at time-step t is represented by Posb(t). This is
compared with the a-th agent’s prediction value Posa→b. Therefore the squared
difference (Eq.(11)) evaluates the precision of the a-th agent’s prediction.

Fa = s1 × F turn
a + s2 × F predict

a , (7)

F turn
a =

1
P

P∑ (
T∑
t

ga (t)×
T∑
t

gb (t)

)
, (8)

ga(t) =
{

1 Posa(t) ∈ RSb(t)
0 Posa(t) /∈ RSb(t)

}
, (9)

F predict
a = − 1

P

P∑(
T∑
t

Pa (t)×
T∑
t

Pb (t)

)
, (10)

Pa(t) = (Posb(t)− Posa→b(t))2, (11)

The performance of turn-taking is evaluated for different lengths of time ( T =
500, 1000 and 1500 ), so that agents cannot tell when the evaluation time is
over. Evaluating the turn-taking performance at each GA generation, we leave
the best E individuals in each population and let them reproduce with certain
mutation rates. The GA proceeds by repeating this procedure and the recurrent
neural networks evolve.
Noise: Note that sensory noises are added to the input neurons during each
run. Therefore agents have to take turns under a noisy environment.

4 Simulation results

4.1 Dynamics Repertoire

Simulation was done with a GA using 15 individuals (P = 15, E = 4). Figure 3
shows examples of the spatial trails of an agent from different GA generations
with different initial population structures.

We can approximately classify these trails into two patterns based on their
appearance. When spatial trails consist of regular curves and the turns are ex-
changed almost periodically (which corresponds to an abrupt turning point),
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Fig. 3. Spatial trails of turn-taking behaviour observed in the simulations. In order to
clarify the qualitative difference of turn-taking structures, a spatial trail of only one
of two agents is shown. The other agent moves around these trails generating almost
similar trails. All games in these graphs are started from (550, 300). (a) is a example of
geometric turn-taking. (b),(c) and (d) are examples of chaotic turn-taking behaviour.

we call them geometrical turn-taking. On the other hand, if spatial trails have
irregular curves with non-periodic turn-taking, we call them chaotic turn-taking.

In the earlier GA generations, the agents with geometric turn-taking have
a higher performance (Fig. 3(a)). The behaviour structure is as follows: one
agent follows the other and passes it; then it slows as does the other agent; then
both agents simultaneously turn around quickly. This returns the agents to the
original pattern. A series of behaviour patterns repeats almost periodically, and
in this way the context nodes are periodically activated.

In the later GA generations, more chaotic patterns emerge (Fig. 3 (b), (c)
and (d)). In contrast to the geometrical patterns, the turns are exchanged in
different places with irregular time intervals. Therefore, the spatio-temporal pat-
tern becomes chaotic. The corresponding context space plots show some tangled
continuous-line formations.

The evolution of geometrical turn-takings to chaotic turn-taking is explained
as follows: The evolutionary pressure of GA at first makes agents behave in a
stable way in the noisy environment. We believe that robustness against noise
prefers geometrical turn-taking.
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Fig. 4. Noise-driven turn-taking behaviour. There is an attractor of role-fixed be-
haviour. By adding noise to the agents, an agent can slip out of the attractor and
successfully perform turn-taking.
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Fig. 5. The performance of turn-taking behaviour as a function of noise strength.
Under the lower level of noise, agents cannot perform turn-taking. Beyond a certain
noise level, agents take advantage of noise to perform turn-taking. This critical noise
level is lower than the one used in evolution.

4.2 Noise-driven Turn-taking

Some turn-taking behaviours are established by taking advantage of the noise
(Fig. 4). As shown in the figure, there is a strong attractor of a circular pattern
of role-fixed chasing and evading without exchanging turns. Turn-taking emerges
beyond a certain noise level (Fig. 5). Below that level, the attractor of the fixed
role is too stable to escape. In another case, there are three attractors without
noise. One is that agent A chases the rear side of agent B closely. Another
one is the opposite, and the last one is that in which both agents chase each
other. Every three attractors consist of circular orbits. The transition between
attractors is caused by noise. Without noise, agents are trapped by one of the
attractors.

Compared with these noise-driven behaviours, chaotic turn-takers can estab-
lish turn-taking behaviour without noise. Even if noise is introduced into the
system, chaotic turn-takers can establish turn-taking behaviours independent of
small noises. Namely, they do not utilize noise but suppress the effect of noise
to perform turn-taking. On the other hand, noise-driven turn-takers need noise
to perfrom turn-taking.

In the next section, we discuss this dynamic adaptability.
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4.3 Turn-taking with Virtual Agents

A difference between mere oscillator entrainments and dynamic coupling is found
in the ’adaptability’ of the coupling between the agents that is established by
evolution. In order to clarify the nature of the dynamic interactions more con-
cretely, we compare the behaviour of “live interaction” with “recoded interac-
tion”. The “Live interaction” is normal interaction between evolved agents, and
the “recorded interaction” is that between an agent and a virtual agent, defined
below.

First, we select the two best agents, A and B, from each population. Turn-
taking between these agents is studied without introducing noise. This is what
we term ’live interaction’. The trails of the agents are recorded during the run.
Then, turn-taking between agent A and the recorded trail of agent B (i.e. a
virtual agent) was conducted. This is what we term a ’recorded interaction’. We
perturb the recorded trail and simulate the changes in the turn-taking dynamics.

Figure 6 shows the growth of a discrepancy between A-virtual B and A-
perturbed virtual B (chaotic turn-takers). During the initial few hundred steps,
no discrepancy is observed. The behaviours are similar as is shown in the figure.
However, a small noise is amplified and the orbit drastically changes from the
original orbit around 800 time-steps. In terms of the turn-taking behaviours, the
adaptive agent cannot recover harmonization with the perturbed virtual agent
any longer. The agent approaches the trail and tries to dynamically resume the
original turn-taking behaviour.

Another example (the agents at 3,000 generations) is shown in Fig. 6 (b).
These agents establish geometric turn-taking. In this case, agents can adequately
cope with the perturbed virtual agent. Note that agents constructing geometric
turn-taking behaviour do not always, but frequently do, have a tendency to cope
with a perturbed virtual agent. It depends on the timing and strength of the
perturbation. Sometimes turn-taking behaviour breaks down when additional
noise is added to the recorded trail. However, there are some examples in which
turn-taking recovers after a certain period of discrepancy.

5 Discussion

It is found in the experiments of turn-taking against virtual agents, that chaotic
turn-takers are much more sensitive to the difference between the live and
recorded inputs. In other words, turn-taking is driven by the ongoing interac-
tion. On the other hand, geometric turn-takers are robust against the difference
due to the restricted number of dynamics (may be only one or two). Therefore,
turn-taking is driven by the stiffness of the individual dynamics. This is also
confirmed by the experiments with different noise structures (Fig. 7) and also
by the fact that chaotic turn-taking takes over from the geometrical turn-taking
in the evolutionary context of our GA simulations. We speculate that geometric
turn-takers can take turns only with fewer agents than the chaotic turn-takers.
In summary, we claim that the chaotic turn-taking is less robust against noise
but has more adaptability, compared with the geometric turn-taking.
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Fig. 6. Differences of orbits between agent’s trails in a game with an adaptive agent
and with the recorded trail. A small noise is introduced at 340 time-steps. If there is
no noise, no difference is observed. Agents used in (a) and (b) correspond to those in
Fig. 3 (c) and (a), respectively. The difference is amplified if agents fail to establish
turn-taking.

We compare this simulation result with Trevarthen’s double-monitor exper-
iments between a baby-infant and its mother [12]. Mother and baby-infant only
communicate through videos that display their faces to each other. It is reported
that for the baby-infant to engage with the mother, the correct style and timing
are required. If the recorded video of the mother is displayed to the baby-infant,
the baby-infant becomes withdrawn and depressed. This is also true for the
mother when she watches the recorded video of the baby-infant.

Trevarthen’s experiments show that it is not necessarily important for the
baby-infant that the mother is displayed on the monitor. It can be assumed
that the most important clue under interactions is the ongoing anticipation of
a partner. The baby-infant performs some actions and anticipates the mother’s
reactions reflecting the baby-infant’s actions, and this is also true with respect
to the mother’s anticipation of the baby-infant. Interactions in social behaviour,
including turn-taking, can be established when these anticipations are mutually
formed dynamically. In our simulations, when an agent calculates outputs, this
calculation simultaneously affects the internal dynamics. That is, the actions
performed form its internal dynamics much as actions form anticipations in the
statement above. The agent receives inputs as a partner’s actions reflecting the
agent’s own actions. We maintain that turn-taking is established when these
structures are mutually organized. Turn-taking is thus broken in the simulation
with virtual agents. We therefore claim that this mutual adaptive coupling of
actions and internal dynamics between agents is related to intersubjectivity.

Acknowledgments: This work is partially supported by Grant-in aid (No.
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