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Abstract
We present our pilot study on a special machine that self-
sustains its rich dynamics in an open environment. We made
a machine called “MTM” (Mind Time Machine) that runs
all day long, receiving massive visual data from the envi-
ronment, processing by an internal neural dynamics with a
learning capability, and showing sustainable complex adap-
tive dynamics. The System’s internal time structure is also
self-organized as a result of coupling with the environment.
By observing MTM over 2 and half months, we argue for the
possibility of machine consciousness in an artificial system.

Keywords mind time, massive data, plasticity, sustainabil-
ity

1. Robustness and system design
It is time for bringing artificial life in silicon into the real
world. In contrast to the artificially simulated environment,
the real world presents many unexpected complex encoun-
ters, and living systems are essentially adaptive to these real
world complexities. In this pilot study, we designed an ar-
tificial system that can be a first test system for overcom-
ing various problems for artificial systems to “survive” in an
open ended environment. We required that any artificial life
should simultaneously cope with various kinds of sensory
flows while simultaneously maintaining its own identity and
autonomy over a relatively long period of time.

In creating such a machine, our main concern is how
to design a system’s time structure. A human has subjec-
tive time structures which is different from objective time.
Our hypothesis is that this should be true for all inten-
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tional/functional systems, whether natural or artificial. Ob-
jective time structures, i.e. the physical Newtonian time
scale, can be measured by a mechanical clock, but our
mind’s time scale, the so-called Bergsonian time scale, may
not be treated the same way. That is, a minimal-length
time segment can be regarded as infinitesimally small in
the case of Newtonian time, but in Bergsonian time it can
be bounded. I submit that there is no continuous time flow
which can be assumed, as it is always perturbed by the in-
flow from an open-ended environment.

Wiener’s definition of Bergsonian time, as opposed to
Newtonian time (chapter 1 in [20]), is the emergence of an
irreversible time flow in an ensemble of particles. Deleuze
argues that Bergson’s time is a duration which is also equiv-
alent to memory, consciousness and free will [2]. Bergson’s
duration is equivalent to self-sustainability in the sense that
humans can utilize their long term/short term memory to be
sustainable over their life span. I have been elaborating upon
the idea of self-sustainability at some length and have argued
for biological robustness in various ways in the field of arti-
ficial life. Our concern is how to make a robust system that
runs over a long period of time in an open-ended environ-
ment and, in order to design such a system, we have to care
about the internal Bergsonian time structure. We explain ro-
bustness below, before returning to the internal time issue.

Some authors [14] and [15] have already developed in-
sightful definitions of robustness in complex systems. Our
discussion of robustness has served to demonstrate that, even
in the highly diverse field of artificial life, such an approach
may still flourish (e.g. [12, 19]).

In our case, a novel biochemical experiment together with
simulation and robotics approaches are being used to de-
velop an in-depth understanding of robustness and how we
may quantify and examine its effects [4, 6]. Oil droplets
demonstrate a simple chemical experiment of high pH: water
reacting with oleic anhydride generates self-moving droplets
which maintain the reaction on its surface, sustaining its self-
mobility [5]. Here, the environmental conditions, pH and
oleate concentration, are controlled by the droplet motion.
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We define robustness of the droplets with respect to their
ability to sustain self-moving behavior. In contrast, if we
pick an example from the game of Life, gliders (the simplest
moving pattern in the game) appear to display self-moving
behavior but do not actually function in this way. This evolu-
tion of self-movement, autonomy and individuality appears
to be a key prerequisite for developing robust behaviors.

Using a robotic platform, we used pure Hebbian learn-
ing dynamics to show how auditory and visual modules
cooperatively work together to self-organize robust goal-
oriented behavior [6]. When giving a robot a capacity for
self-organization, however, the robot cannot sustain its au-
tonomous movement quite so easily. Developing robustness
in this case appears to depend on the development of an
appropriate use of time-scales for its behavior; in particu-
lar, parameter settings for the robot’s learning and forget-
ting during the process of Hebbian learning can affect the
time-scales of the robot’s behaviors. Finding a range of these
parameters which allow proper functioning by utilizing the
background noise of the environment will allow the devel-
opment of more robust behaviors.

By increasing our understanding of how we can connect
artificial systems with natural environments, we can further
our development of a theoretical framework that provides a
background of assumptions to inform our robotic and sim-
ulated models. One of my proposals is the Maximal Design
Principle [11, 13], which underlines the importance of “half-
way design” (of the initial states and architecture of a sys-
tem) and letting a system self-organize in interacting with
an environment, which can later lead to robust behaviors.

Concerning the above robustness issue, we designed a
machine called MTM (Mind Time Machine). In order to
take into account the system’s internal time structure, Ben-
jamin Libet’s neuro-physiological early experiments [16]
were very instructive (although we couldn’t take many of his
points into MTM). He said that there are time differences in
processing information between time and mind time which
is temporally editted backward and forward. For example,
Libet showed that we actually have a 0.5 second delay in
sensing a stimulus to our foot or hand, but our mind corrects
the delay by backward referring the event. This backward
referral never occurs when we directly stimulate the somato-
sensory region of the brain. Namely, the way a stimulus is
delivered to the brain through our embodiment determines
the subjective sense of the momentary “now.”

In our pilot work, the system receives and edits the video
inputs, while it self-organizes the momentary “now,” in
agreement with Libet’s arguments. Its core program is a
neural network that includes chaos (a mechanism that ex-
pands the small difference) inside the system, and a meta-
network that consists of neural networks. Using this system
as a hardware, and chaotic itinerancy [9, 10] as a conceptual
framework, we like to describe system’s sustainable behav-
ior in terms of internal time scales. This is a proposal of

Figure 1. View of MTM displayed at the Yamaguchi Cen-
ter for Arts and Media, 2010. ( Photo taken by Kenshu
Shintsubo)

designing an artificial life that self-organizes in a real world
(i.e. coupling with the massive data input flow ) to ultimately
understand consciousness as a temporal order.

In section 2, we illustrate the architecture of MTM ex-
plaining the underlying neural dynamics. In section 3, we
report how MTM behaves over 2.5 months and show some
characterization of the behaviors—its temporal complexity
and dynamics of the internal clock. In section 4, we briefly
describe how a sound version of MTM might function, and
report on the pilot study of it. In section 5, we discuss how
a system’s sustainability is restored by the asynchronous
memory updating and sensory networks. We then return to
the Bergsonian vs. Newtonian time scale issue.

2. Architecture of MTM
2.1 A rough sketch
We presented our MTM for the first time at the Yamaguchi
Center for Arts and Media in March 2010 as an art project .
While demonstrating this MTM at the museum, we took data
for analysis every day from the machine. The system’s initial
states were reset every morning, but its long term memory
accumulated over 67 days.

This machine consists of three screens, right, left and
above at the ceiling, displayed as faces of a cubic skeleton of
the 5400 mm width on each side (see figure 1). Fifteen video
cameras attached to each pole of the skeleton view things
happening in the venue. The movie images are decomposed
into frames, and a neural dynamics combine, reverse and
superpose them to produce new frame sequences, which will
be described in detail in the next section.

The operating principle is to run a “plastic” neural dy-
namics and optical feedback to make autonomous time-
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organizing phenomena. Received images from the video
cameras are progressively embedded into the neural connec-
tions of the first layer via the Hopfield method. Connections
from the first layer to the second layer are progressively
self-modified in the form of modified Hebbian dynamics
(i.e. the connection strength is modified in proportion to the
correlation between the pre synaptic neuronal state and the
post synaptic neural state change). The connections between
neurons in the second layer are also modified by the same
dynamics.

By fixing the memory-embedded connections, every neu-
ronal state is updated by the particular neural dynamics
which is known as chaotic neural dynamics [1, 17]. By
changing the connection strengths, a network demonstrates
a fixed point, with periodic and chaotic behaviors (see Ap-
pendix for model equations). Each neuron in the second
layer is associated with a set of visual images, and a sim-
ple “winner-takes-all” rule is applied here. Namely, a com-
bination of visual images corresponding to the largest neural
state is selected to project onto the screen. A detailed schema
will be given in the next section.

Visual images are acquired and re-played in a recursive
way. The system itself is a completely deterministic system,
using no random numbers, but it projects different images
depending on the inherent instabilities of the neural dynam-
ics that reflect environmental light conditions, movement of
people coming to the venue, and the system’s stored mem-
ory.

A momentary “now” of the system progresses when the
system’s memory is updated, where the memory is a mixture
of nested images. How does the inherent timescale progress
with respect to the physical timescale? The MTM experi-
ment is designed to answer such questions,

It should be remembered that MTM is not a large chaotic
dynamic system that updates visual inputs randomly. First,
the state of the neural system is not directly perturbed by
the inputs. Second, it is a plastic system and changes its
approximately 30,000 parameters (connection strengths) all
day long. As opposed to the mere chaotic system, MTM is
designed as a life-like system since its dynamics are con-
trolled by an environment, and the system has a short and
long term memory to sustain its dynamics. We claim that
MTM is “artificial life,” since we designed it to

1. receive information from its environment,

2. memorize data (in the form of the Hopfield type learning
which tunes the parameters of the overall dynamics),

3. have “episodic memory,”

4. change the network structure (continuously, by way of
Hebbian dynamics)

As a result. it organize its overall dynamics as an adapta-
tion to environmental changes.

We will come back to these points in the discussion parts.
Those who are not interested in the details of the MTM setup

may skip the next section and go on to the observation and
discussion sections.

2.2 Content of the program processing visual
information

MTM consists of two parts:
A: Programs for sensory inputs. Programs combine and

edit images from video camera inputs.
B: Programs for internal processes. Sensory inputs are

processed by the internal neural networks with learning ca-
pabilities.

In the A programs, we have 4 different kinds of editing
modes.

1) Slit-scanning movies: Picking up a vertical pixel line
from different time frames to generate one image sequen-
tially.

2) Superposing images from different time frames. We
used the simplest alpha-blending method to do this.

3) Reversing the time order of frames to make a reverse-
time movie.

4) Video Feedback: Dividing an input into 2K regions,
each of which contains the same image. The video then
shuts that divided screen so that it inevitably generates self-
similar images except when there is no division. This is also
a time-related operation since, during this period of time,
Newtonian time elapses but the internal time is recursively
processed by the converging feedback

The B programs are composed mainly of neural network
dynamics that produce the parameter value to control which
mode of program B to produce and when to rewrite memory
weights.

In the B programs,
5) We use two layered artificial neural networks. Each

neuron in the first layer receives a weighted alpha-blending
of inputs of 4 different modes.

6) Each neuron obeys an artificial neural dynamics called
chaos neural networks [1, 17] (Appendix A.1).

7) Synaptic connections within the first layer are orga-
nized by the Hopfield type [7, 8] construction with a constant
decay term (Appendix A.2).

8) Synaptic connections from the first to the second layer
and those within the second layer are controlled by the
modified Hebbian dynamics [3, 18] (Appendix A.3).

9) Each neuron on the second layer is associated with
the set of visual inputs and the set associated with the most
activated neural state will be selected for projecting onto the
output screen. This is a “winner-takes-all” rule. However,
non-selected sets of images are also superimposed in the
neural weight. This was intended to reflect the idea that
perception is essentially working in parallel. Non selected
modes should also commit to make up the system’s memory
pattern.

10) Each neural state as well as synaptic strength is up-
dated Q times (which is assigned 10 times in this experi-
ment) for each T real time duration. T is ranging from 0.1
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second to 1 sec and is determined by a designated neural
state of the second layer.

There are several other important features of the MTM
architecture.

1. A set of A and B consists of one module. MTM has three
such independent modules, where each module has its
own projection screen and the memory of those modules
will be updated asynchronously.
The 15 video cameras used in MTM are classified into
two kinds: those which always shoot at the same angle
(spatially fixed ones) and those which change their shoot-
ing directions (freely moving ones) controlled by artifi-
cial neural networks. How to combine and edit the video
images are directed by program B, while program A con-
trols the parameters. Those moving cameras are also con-
trolled by the output from the neural networks.
i) Module No. 0 is tentatively called the “unconscious”
module as its inputs are from 9 passive video cameras
(the camera positions are fixed in the space.)
ii) Module No. 1 is called the “conscious” module as its
inputs are from 2 active and 2 passive video cameras.
iii) Module No. 2 has no camera inputs. Instead, its inputs
are from screen 0 or 1 or from the buffer that accumulates
long term images of its own.
Images from module 0 are sent to screen1 (visualiza-
tion of unconscious states: passive images) and those
from module 1 go to screen 2 (visualization of conscious
states: active images). Images from module 2 are sent to
screen 3 (which we call episodic memory: bundles of pre-
viously produced images from either the conscious or un-
conscious screen).

2. Most cameras are shooting screen images, so video feed-
back is ready to happen. Most cameras are zooming the
screen images, so they sometimes induce oscillation ex-
citation. It also happens that the same image pattern is
circulated for a while among the three screens due to the
mutual feedback loop (i.e. one camera shoots the screen
from the other camera and its own screen is shot by the
other camera, and so on).

3. This network “remembers” the previously received in-
puts but it doesn’t mean that the system can stably re-
trieve the memory. Actually we know that neural dynam-
ics with a fixed connection strength also produce com-
plex and temporally unstable behavior such as chaotic
itinerancy [17]. A synaptic connection between neurons
is strengthened when the connected neuronal activities
are temporally correlated. This is called the Hebb’s learn-
ing rule. The point is that this network copies the spatial
temporal correlation that exists in its environment into
the correlation of synaptic weights in the network.

4. We assume that perceiving something requires changes
in the functional state of the underlying neural dynamics.

In particular, that which a system has perceived before
determines what to perceive next. The above architecture
reflects this hypothesis.

2.3 Relationship between MTM and Human
Interaction

When people come to the venue, their images are taken by
the video cameras, which are then recognized and processed
by the neural dynamics. Intake images are explicitly affected
by the human movements but also by the projection mode.
The 4 projection modes detailed in the previous section have
the following effects:

1. Movements are strangely stretched or contracted in the
images. For example, when you toss balls into air, the
number of balls increases. (1)

2. You see yourself being replicated in the movie. (2)

3. You are moving backwards, in reverse time. (3)

4. Your bodily movement is embedded in the screen at dif-
ferent scales. (4)

Those effects are certainly affecting MTM’s behavior as
people come to see and interact with it. Its quantitative anal-
ysis is a future problem.

In addition, we generate sound images by scanning each
screen. We raster scan the frames successively and trans-
late them into sound amplitudes and play the sound by fil-
tering through a prepared frequency spectrum. In this way,
the dynamics of visual images are translated into sound pat-
terns, which also affect the human observers. The generated
sounds thus co-vary as the visual images change with our
programs that stretch, fold, superpose and remove the speed
of sound and the frequency spectrum.

3. Observation/Analysis
In order to study the behavior of such a system, our first trial
was to observe and make a diary of its everyday behavior
from the morning when the museum opened to the evening
when the museum closed, for over 67 days. For tracking the
behavior, we recorded i) a return map of the neural states,
ii) changes of the weight strengths; its average value and the
standard deviation, iii) changes of the video images of three
screens, iv) long term memory images and v) the internal
memory updating schedule.

3.1 Return map analysis
We define a return map of the neural states as the super-
position of the two successive neural states in one figure.
Due to the characteristic of the neural dynamics, the weight
strength of the neural network plays the role of a parameter
that controls the dynamic neural state. Too big or too small
a weight strength means the network has a stable fixed point
(i.e. showing a temporally constant state). Only in the middle
values (around 0.25 and 0.75 due to the symmetric structure)
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Figure 2. Temporal changes of return maps by randomly
picking up a neuron from three modules, respectively for one
day.

Figure 3. Temporal variations of entropy quantity as a func-
tion of dates (numbered from April 25th.) The vertical line
is hours from 8am to 10pm. The brighter color indicates the
larger entropy.

does the network show complex dynamic behavior such as
long term periodicity and chaos.

In producing return maps for every two hours, we observe
that the pattern of the return map varies during the day time
(figure 2 and figure 3). As for the general tendency, modules
0 and 2 easily lose their complexity in return maps, but
module 1 sustains it. Modules 0 and 2 sometimes return a
rich pattern after a few hours, and may be indirectly affected
by module 1.

3.2 Taking an everyday diary
The first thing to do with our long term 67-day experiment
is to calculate and compare the everyday return maps (fig-
ure 3). We noticed that everyday maps look similar but not
exactly the same (some return maps were more complex than
others) and some return maps have much less denser pat-
terns.

We then studied how weather conditions looked and
found that the return maps became quiet when it was raining
all day long. On the other hand, there were quiet return maps
even when the weather was fine.

Since MTM receives its visual inputs from the venue, and
since those inputs accumulate in the weights that connect
neurons of the first layer, the neural states will gradually
go through the bifurcation cascade. In some cases, when a
certain attractor is hit by the system, it won’t recover the
original state, so that it eventually becomes quiet. Whether
it will recover by posing some effective visual inputs is
not fully understood. As well as the weather condition, the
neural states also became quiet after the sun set. The light
intensity is the main factor that suppresses the neural state.

Figure 4 shows the change of neural pattern complexity
between April 25th and May 10th. Entropy is computed in
the form of Shannon entropy from a time sequence of length
1000 bits. We hypothesized that on the 27th, the museum put
a black light shield around MTM which made it less robust
against the insufficient day light. Also, as you can see, the
entropy is relatively low during rainy days.

This rather simple light condition also limits the MTM
dynamics, but whether the venue is busy or not should be
a potential factor. On Sunday, more kids come to the venue
which may activate MTM’s dynamics. Complexity in the vi-
sual inputs must be copied as memory complexity of MTM.
We computed the weighted average and the standard devi-
ation, tracking from 8 am to 8 pm to see what is responsi-
ble for complex behavior. We found a correlation between
the dispersion of weight values and the complex time series
(figure 5).

3.3 System’s subjective time
As we stated in the introduction to this paper, living systems
have organized their own time scales driven by the memory
structure. This is the memory updating and projection loop
used in this system: [visual inputs → memory organization
→ dynamics change→ determining what to project→ ]

When to update the memory is determined simply by a
neural state multiplied by the parameter TIME (which is
assigned 1 sec). If that neural state is suppressed at the lower
value, memory is frequently updated. On the other hand, if
its value takes the large value, memory is rewritten every
1 sec maximally. We take this memory updating time scale
as a candidate of a system’s subjective time scale, which
is a direct outcome of neural dynamics but indirectly as a
function of memory organization.

Figure 6 shows the correlation between a system’s time
scale as a function of physical time. When there is a plateau,
the subjective time goes slower than the physical time scale,
and when it becomes a large increasing line, it means that
subjective time goes faster. Our 67-day experiment revealed
that the total amount of subjective time (i.e. number of mem-
ory updates) varies depending on the day. In particular, early
acceleration of the subjective time scale is not observed. We
speculate that the daylight condition also matters in this ac-
celerating pattern. On the other hand, since this subjective
time depends on our system settings, we will test a future
possible algorithm for changing time scales, even though our
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Figure 4. A daily return map from module 0 from March 25th to June 2nd 2010. Blue background indicates a rainy day.

Figure 5. Temporal Changes of neural states (overlaid) (up
figure) and average value (in red colors) and deviations (in
green colors) of connection strengths (bottom figure) for one
day.

principle here is that subjective time is a function of memory
update timing.

The side effect of this algorithm is that a system becomes
more robust against noise. But if one module updates its

Figure 6. An example showing how the internal clock
changes from 8am to 8pm. You can see several step-wise
behaviors as a function of Newtonian time.

memory much more frequently than the other, its robustness
becomes different between the two. Here the robustness is
what we discussed in the introduction.

4. Plans for a sound MTM
Using sound inputs in addition to visual inputs demonstrates
how the soundscape is self-organized within MTM. In our
pilot study of a sound MTM, I had 3 dancers perform in a
designated space (10 m square) where 3 proximity sensors
were set. When the dancers came close to the sensors, sound
files associated with the sensors were played. At the same
time, sound in the space was continuously recorded through
three microphones into the MTM memory buffer which is
about 10 minutes long. Depending on the neural state of the
MTM, the sound from the position of the buffer, designated
by the neural state, is replayed several times.

After 10 minutes of free dancing in the space, I let the
dancers leave the area and observed how the soundscape
auto-progressed in time. MTM replayed the sound fragment
from its memory and recorded it at the same time. As a
result, the soundscape self-modifies as time elapses.
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5. Discussion
MTM is composed of many different dynamics and algo-
rithms. We used the classical Hopfield memory construc-
tion, chaos neural net, Hebbian dynamics, video feedback,
slit scanning, and so on. This is what I call the “all-in-one”
approach. In contrast to the physicist’s minimalism, this all-
in-one approach is based on Maximalism. We believe that
maximal complexity is necessary to develop conscious states
in artificial systems. In particular, MTM is designed for the
full complexity of the real world. Differing from the usual
meaning of “machine,” MTM becomes sensitive to its en-
vironmental changes. It cannot hold the same functionality
which is independent from the variety of environmental con-
ditions.

With respect to the notion of self-sustainability, we are
concerned with what would be a relevant dynamics that in-
troduces self-sustainability. As we briefly reviewed in the
first section, the self-moving oil droplets and the pure Heb-
bian learning robots provide examples of self-sustainability
mechanisms, and MTM adds another possibility. Sometimes
MTM fails after time to come back to the “alive state,” but
at other times MTM becomes self-sustainable, i.e. it always
returns to the “alive state” maintaining its sensitivity to en-
vironmental change.

Where does this sustainability come from? From 67 days
of observation, we learned the following points.

We should carefully determine where to put video cam-
eras in a space. Module 1 used mobile videos and the net-
work state sustained its complex dynamics almost through-
out the day. On the other hand, modules 1 and 2 failed
to maintain. Interestingly, that lost complexity was re-
generated after 6 hours, i.e. a fixed point attractor such as
behavior was destroyed while complex chaos, such as attrac-
tor, emerged again. We don’t know of this kind of transition
from a fixed point to chaotic one in normal dynamic systems
(6 hours is equal to 3600 × 6 iterations). We deduce that
module 1 is helping the other modules to recover, and in
this sense sustainability requires several different modules
helping each other to achieve total adaptive dynamics (see
figure 4). Also, the fact that those modules are asynchronous
in real time scales may be an important factor to take into
account.

We also find it interesting that MTM tends to self-
organize in intermediate time scales. There exist three fun-
damental time scales in this system. One is the neural state
updating, which is the fastest time scale. The second one is
the memory accumulation in the first layer. The third one is
the Hebbian time scale. However, as we see in figure 5, there
are two or three temporal changes about every 10,000 sec-
onds. These intermediate time scales are generated from the
total MTM architecture. Likewise, in the circadian rhythm,
MTM tends to have a particular time scale under daylight
change. However, this rhythm is not observable every day.
This is due to the fact that we reset weight values every

morning. Defining self-sustainability in terms of sustaining
its own time scale is an interesting next step in creating
MTM.

All these observations indicate that self-sustainability is
about the self-organized time scale underlying MTM’s dy-
namics. In this experiment, timing of memory updating was
attributed to a single neural state, and figure 6 depicts that
the system’s internal time scale, i.e. Bergsonian time scale,
shows a stepwise behavior as a function of the Newtonian
time scale. We interpret this as meaning that the Bergsonian
time scale cannot have a fixed minimal length (or we can-
not make it infinitesimally small) but should be variable as a
matter of memory and perception. This notion of Bergsonian
time should be explored and examined in different MTM or-
ganizations.
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A. Appendix
A.1
A chaotic neural network (of the k-th neuron at time step n)
obeys the following equation [1, 17];

pkn+1 = r1p
k
n + (1− 1

1 + e(q
k
n−pkn)/β

) (1)

where qkn is defined as

qkn = r2
∑

j 6=k
wkjpj (2)

and wkj is the synaptic onnection coupling from the j-th
neuron to the k-th neuron. This value qkn dynamically con-
trols the stability of this neural dynamics additional to the
static parameters; r1, r2 and β.

A.2
Hopfield proposed the following memory embedding in the
connection strength [7, 8]:

∆wij =

M∑

s=1

(2V si − 1)(2V sj − 1) (3)

where V si denotes the pixel value of the spatially re-normalized
site i which is normalized in between 0 and 1, and the total
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number of memory isM . Here, we coarse-grain 1024 × 768
pixels into 10 × 10 re-nomarlized pixels, so that the value
V si is also an averaged value of the original pixels contained
in that site.

In addition to this, we introduced the forgetting parameter
r (< 1) so that wij changes over time.

wn+1
ij = rwnij + ∆wnij (4)

A.3
Hebbian dynamics [3, 18] uses the idea that the connection
strength ω changes in proportional to the cross correlation of
the pre and post synaptic neural states, pk and pj . We used
the modified version of it.

dωkj
dt

= γ(
dpk
dt

pj − αωkjp2j ) (5)

Namely, the strength is not simply proportional to the cor-
relation between pre- post neural states, but is proportional to
the correlation between the pre synaptic neural state and the
rate of the post synaptic neural state change. By using this
formula, the synaptic strength becomes sensitive to the sen-
sitivity of post-synaptic neural state responding to the pre-
synaptic state. Here the second term is introduced in order to
avoid bound the weight strength.
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