
1. Introduction

In recent studies in neuroscience, dynamic aspects of the
brain have been the subject of a good deal of investigation.
There has also been an accumulation of data that cannot be
rationally explained within a static framework. Recently, it
has been suggested in various contexts that the brain is or-
ganized not only in a hierarchical fashion but also in a “het-
erarchical” fashion. In this context, the word “heterarchy”
refers to structure or states existing in reticular networks, in
contrast to hierarchical structure or states. According to this
point of view, a single neuron or a neuron assembly is rep-
resented by a single code and also by a multiple code; the
information representation is realized both by the state of
neurons and by the dynamic relation among states.

In neural network models of biological information pro-
cessing, it has been assumed that an attractor in phase space
(state space) represents external and/or internal informa-
tion. In other words, it has been assumed that a neural net-
work maps the structure of information contained in the 
external and/or internal environment into embedded at-
tractors (see, for example, Amari 1974; 1977; Amari & Mag-
inu 1988; Kohonen 1972; 1982; Hopfield 1982). With this
assumption, if the static representation of information is
universal, the concept of an attractor should be adequate
for neural representation (Hirsh 1989).

Recently, however, dynamic modalities of neuroactivities
have been observed as, among other types of phenomena, a
coincidence of random spikes (for example, Abeles 1991;
Aertsen et al. 1994; Fujii et al. 1996; Oliveira et al. 1997;

Riehle et al. 1997), as coherent activity in neuron assemblies
(Aertsen et al. 1987; Arieli et al. 1996), as the synchroniza-
tion of oscillatory spike trains (Deppisch et al. 1993; Eck-
horn et al. 1988; Engel et al. 1992; Gray & Singer 1987;
1989; Gray et al. 1990; Singer 1994), as chaotic population
dynamics in the g-range (Freeman 1987; 1994; 1995a;
1995b; Kay et al. 1995; 1996), as chaotic interspike intervals
giving rise to a chaotic fluctuation of membrane potentials
(Hayashi & Ishizuka 1995). We have adopted the framework
of chaotic dynamical systems to interpret the functions of
dynamic neural activity emerging in the brain, which can be
regarded as a hermeneutic device (Érdi 1996) that can act in
a hermeneutic process (Érdi & Tsuda, in press; Tsuda 1984).

The dynamical systems’ interpretation of dynamic neural
activity with chaos analysis has also been presented (see, for
example, Babloyantz & Lourenço 1994; Érdi et al. 1993;
Freeman 1987; 1995a; Kaneko & Tsuda 1996; Nicolis 1982;
1991; Nicolis & Tsuda 1985; Tsuda 1984; 1990; 1991a). In
these works it has been shown that chaos can be effectively
used for biological information processing. Types of com-
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plex dynamical behavior, such as chaos, can be categorized
in terms of quantities including topology, measure, and di-
mension. The functional form of a decay of amount of in-
formation also categorizes chaos according to the ability of
a chaotic network to store spatial patterns using the dy-
namic orbits (Matsumoto & Tsuda 1985; 1987; 1988). The
forms of chaotic behavior observed in biological systems
possess a common feature: a nonuniform probability den-
sity and a weak instability. The probability distribution of
chaotic dynamics is biased due to excitability and its bifur-
cation parameter, which is a control parameter, is biased
due to biological specificity. The former bias is responsible
for the network ability mentioned above, and the latter bias
results in a restricted high-dimensional process. From
these considerations, it is seen that chaos appearing due to
a weak instability cannot be restricted to merely a low-
dimensional phase space. Thus transitory dynamics in high
dimensions emerge.

Since biological neural networks operate in noisy envi-
ronments, the interplay between their deterministic model
dynamical systems and noise is an important subject for
study. Taking into account this issue and those discussed in
the previous paragraph, in this paper we study the roles of
critical chaos in biological information processing with re-
gard to, in particular, the inseparability of dynamic memory
and perception. Based on new concepts of high-dimensional
dynamical systems, we present a hypothesis on the forma-
tion of dynamic memory and perception. This hypothesis
accounts for dynamic functional processes such as episodic
memory and the itinerant process of perception. This hy-
pothesis clarifies the biological significance of the chaotic
activity observed in the hippocampus and in the olfactory
system. The hypothesis also suggests a form of the proto-
type of thoughts.

2. Perception and dynamic memory

Studies of neural correlates of memories have developed
through investigation of the hippocampus, the olfactory
system, the temporal cortex, the prefrontal cortex, and their
interacting systems. The working memory (Baddeley 1986;
Funahashi et al. 1989; Goldman-Rakic 1987; 1996; Sawa-
guchi & Goldman-Rakic 1991) as a cognitive modality can
be dynamic and is easily destabilized in the state space. In
contrast, the episodic memory can be stabilized in state
space, but it appears in association with dynamic cognitive
processes. Finally, the semantic memory must be described
as a stable object. On the other hand, neural activities asso-
ciated with these kinds of memories seem a highly random
spatio-temporal pattern. If these neural activities corre-
spond precisely to memories, it is unlikely that they would
be represented by a single attractor in state space, but
rather by a more unstable one. This observation leads to the
following conclusion: Memories do not emerge entirely
from stored information. Rather, the nature of that which
emerges is influenced at each instant by “traces” of infor-
mation resulting from perception and cognition.

Motivated by the above conceptual observation, we have
constructed a neural network model of dynamic memory in
terms of mathematical objects that are not attractors in the
conventional sense (Tsuda 1991b; 1992; 1994; Tsuda et al.
1987). This model is discussed in the next section from an-
other viewpoint.

There are interesting experimental results demonstrat-
ing the dynamic relations between perception and mem-
ory. In particular, an experiment conducted and a model
constructed by Freeman and his colleagues have attracted
general attention (Skarda & Freeman 1987). In both Free-
man’s work (1995a) and Kay’s work (Kay 1995; Kay et al.
1995; 1996), it is claimed that odor memories are repre-
sented by the chaotic behavior of the collective activity of
the olfactory bulb, and that the process of odor perception
can also be represented by itinerant motion of local EEGs
in the olfactory bulb, in the olfactory cortex, and in the hip-
pocampus. It was found that in the animals’ motivated state
during the process of learning, which is inevitably associ-
ated with the recall and the perception processes, the
neural activity is chaotic (Freeman 1995a; Kay et al. 1995;
1996).

The studies of Freeman and Kay suggest that chaos un-
derlies the entire process of odor perception, and this
process is inseparable from the dynamic memory process.
Among a number of noteworthy findings of Freeman and
his colleagues, a key finding was that animals do not re-
spond directly to external stimuli, but rather to internal 
images created by chaotic dynamics in the olfactory bulb
(Freeman 1995a; 1995c). This suggests that the brain is
hermeneutic (interpretative) in nature and exhibits chaotic
behavior (Tsuda 1984; 1991a). Furthermore, Skarda and
Freeman (1987) offer a hypothesis on the role of chaos in
the dynamic processes of perception and memory. Accord-
ing to this hypothesis, without chaos animals can neither
record nor perceive odor. As described in the next section,
the dynamic behavior exhibited by our theoretical model
strongly suggests that their hypothesis is correct.

For other modalities of sensation, the dynamic receptive
field may be understood as a neural correlate of dynamic
perception like a perceptual drift (Freeman 1995a). Dy-
namic (spatio-temporal) receptive fields have been ob-
served in the retina (Mizuno et al. 1985; Tsukada et al.
1983), the auditory cortex (Eggermont et al. 1981), and the
primary visual cortex (Dinse 1990; 1994). It was pointed
out that there exist subfields, some of which are activated
for only 20–50 msec during a presentation of stimuli; the
combination of activated subfields varies even for a sta-
tionary presentation of stimuli. In the theory of the dy-
namic receptive field, a classical receptive field, which is
understood as static one, is reinterpreted as a spatio-tem-
poral average of the dynamic receptive field. The spatial
average should be taken over an entire receptive field, and
the temporal average over a few hundred milliseconds.
Since the time scale 20–50 msec is approximately a “unit”
of psychological time, we may consider the dynamic re-
ceptive field as a neural correlate of internal dynamics
for restructuring and/or reorganization of mental space
(Dinse 1990), in other words, the presence of a dynamic
receptive field suggests the presence of dynamic restruc-
turing due to dynamic interactions between higher and
lower levels of information processing (see also Dinse
1994).

Concerning the processing of visual information, Gray
and Singer (1987; 1989) and Eckhorn et al.(1988) found
neural oscillations of around 40 Hz in the primary visual
cortex. These findings followed studies giving evidence for
the presence of g-range oscillations (Bressler & Freeman
1980; Freeman 1987). As an underlying mechanism for
these oscillations, the synchronization of neuron spikes may
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be conjectured. It was actually conjectured that one of the
roles of spike synchronization is to extract the invariant con-
tinuum as a figure out of diverse stimuli, and consequently
to bind different modalities of stimuli (Eckhorn et al. 1988;
Gray & Singer 1987). This is reminiscent of Abeles’s (1991)
synfire chain, proposed to describe how neuron assemblies
in the prefrontal cortex can obtain useful information from
purely random spike trains through coincident and phase-
locked firings.

In the prefrontal cortex, after Abeles’s proposition of the
synfire chain, Vaadia, Aertsen, and others observed the co-
incidence of neuron spikes, and Aertsen et al. analysed
these data precisely (Aertsen et al. 1994; Vaadia & Aertsen
1992). Aertsen et al. found a new functional representation
of neurons, which can be compared with the so-called rate
coding. Fujii et al. (1996) has proposed a dynamic cell as-
sembly hypothesis, based on the concepts of coincidence
detecting neurons and functional connectivities resulting
from coincidence (see also Aertsen et al. 1996). Recently,
Diesmann et al. (1999) constructed a neural network model
for synfire-chains.

Our main concern here is not formulating a coding
scheme at the level of a single neuron. Rather, we cast our
description in terms of macro-variables that represent
macroscopic behavior observed as collective motion (see
the Technical Appendix). These macro-variables can in turn
limit the possible types of coding scheme at the level of a
single neuron. In this respect, our viewpoint is similar to
that of statistical physicists and dynamicists (see, for exam-
ple, Amit 1989; Amit et al. 1985; 1987; Babloyantz 1986;
Haken 1979; 1983; 1991; Mayer-Kress 1986; Sompolinsky
& Crisanti 1988; Sompolinsky & Kanter 1986), where the
understanding of Haken leads to the idea that pattern for-
mation is pattern recognition). A crucial point in the treat-
ment we employ, which distinguishes our treatment from
the conventional treatments of statistical physics and dy-
namical systems, is that the macro-variables we consider do
not behave as simple functions, such as a constant function
or a function periodic in space and time, and in this sense
they are fundamentally different from order parameters
(see the Technical Appendix). The description of the
chaotic behavior in which we are interested necessitates the
use of these mathematically more general macro-variables.
Such chaotic behavior cannot always be described by a low-
dimensional attractor. We thus need a dynamical descrip-
tion that captures the high-dimensional complex dynamics.
Another crucial problem is to describe the interplay be-
tween the order parameter and the “rest” of the system –
that is, the interplay between the deterministic dynamics
and the noise. In the next section, we consider these issues
in relation to neural dynamics.

We take the view that there exists a neural correlate of
cognitive behavior. The inadequacy of the symbolic ap-
proach to higher functions of the brain, which has been
used in the field of artificial intelligence, was clearly pointed
out by Skarda and Freeman, who showed the biological sig-
nificance of chaotic behavior found in local EEG. Addi-
tionally, it should be noted that a sharp distinction cannot
be drawn between the molecular-level timescale and the
psychological timescale. For instance, one can observe
psychological events at some timescale, say 1 sec, and also 
observe molecular events and electric events over almost
the same timescale. Hence there exists an overlap of
timescales. In addition, there are overlaps of many other

timescales. For these reasons, it is not appropriate to de-
scribe cognitive behavior as simply a “macroscopic” behav-
ior. It is thus necessary to study the interplay between
macroscopic and microscopic behavior and from this to
propose a plausible cognitive interpretation of neural activ-
ity. For this purpose, we study the dynamic behavior in non-
equilibrium neural networks, which gives a skeleton de-
scription of behavior observed in the brain.

In this article we study two kinds of networks. One is 
a stochastic recurrent network, and the other is a chaos-
driven stable network. Based on this study, we present hy-
potheses on dynamic memory and perception.

3. Dynamical systems with and without noise 
as a tool for interpretation of neural activity:
Changeover of interpretation from 
low-dimensional attractor to 
high-dimensional itinerancy

3.1. What is noise in neural systems?

In order to clarify the origin of noise, let us consider a sys-
tem consisting of many interacting elements. Here an “ele-
ment” is assumed to obey a deterministic law, so that it en-
tails no unknown component. In cortices, the system in
which we are interested consists of on the order of 105 to
1010 the interacting neurons. Such a system is called deter-
ministic because of the absence of stochastic behavior. The
system may, however, be intractable as a deterministic sys-
tem in the practical sense, because it contains too many de-
grees of freedom. Then, one may attempt, in the sense of
mode-mode coupling theory, to identify collective modes to
act as an order parameter. This approach succeeds in the
critical regime of equilibrium phase transitions, and it can
be extended to bifurcation points in nonequilibrium states
(see for example Haken 1983). Here, the collective mode is
decoupled from the residual modes, since the collective
mode is low frequency, whereas the residual modes are
high frequency. In other words, in such a treatment the slow
motion on the center manifold is decoupled from the fast
motion involved in the convergence to the center manifold.
Here, the collective mode can be described by determinis-
tic equations with a few degrees of freedom, and the rest is
viewed as noise.

Noise is dynamically generated in such manner, but it is
usually assumed to contain infinite degrees of freedom.
Hence, as is shown in Figure 1A, the interaction between
the order parameters constituting a deterministic system
and noise is unidirectional. However, this condition is bro-
ken when order parameters, that is, collective modes, be-
come weakly unstable in a direction normal to the center
manifold, as the slow motion begins to interact with fast
motion.1 Then the number of variables behaving like
noise changes in time. Figure 1B depicts this situation. An 
asymptotic theory, in general, provides an effective method
to obtain a center manifold. Then, once one obtains the
center manifold of interest the stability of states within this
center manifold must be investigated. In the situation we
study here, however, stability in the direction normal to the
center manifold must be investigated, using an index like a
normal Lyapunov exponent.

Taking into account the situation as described above, it is
plausible to think of a neural network in the brain as exist-
ing in a noisy environment even in the absence of thermal
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noise and quantum noise. Since neurons can process infor-
mation even in such a noisy environment, in our model
“noise effects” must be taken into account.

An additional type of noise we have not yet mentioned
has been observed in neurons. This type of noise differs
from that discussed above in that it originates in nonde-
terministic factors. The following two types of noise can be
distinguished. One type results from electric current ran-
domly leaked from neighboring neurons. We refer to this
as dendritic noise. The second type results from quantal
emissions of synaptic vesicles. There are two kinds of quan-
tal emission, spontaneous emission and stimulus-induced
emission.

Spontaneous emission is too weak to activate the postsy-
naptic membrane. Actually, a single such process simply
induces a change on the order of several mV to the post-
synaptic membrane potential.

For the firing to be effective, emission on the order of
104 over all connecting neurons must occur within the de-
cay time of membrane potential. Taking into account the
maximal number of synapses per neuron and the average
decay time of a membrane potential, this is unlikely to oc-
cur. Thus this type of noise cannot in itself represent infor-
mation. It should, however, be noted that it may influence
the subthreshold dynamics.

This kind of noise may play a decisive role in the reduc-
tion of the effective dimension when delay-differential
equations are used to describe the networks. A system with
delay terms is described as an infinite dimensional dynam-
ical system. In such a system, the infinite number of vari-
ables generated by the delay allows for highly complex be-
havior of high dimension. In this case, noise can reduce the
complexity of the system, because noise divides a continu-
ous delay time into some finite intervals within which cor-

relations among some finite variables are preserved. Hence
the effective dimensionality can be reduced by noise.

On the other hand, stimulus-induced stochastic emis-
sion, which is referred to here as synaptic noise, can be ef-
fective for the firing, since a single such process provides an
effect on the order of several mV. Thus here, a coincident
emission on the order of only 10 among ,104 synapses is
sufficient to cause a firing. In the study of model systems,
it will therefore be necessary to consider the effects of den-
dritic and synaptic noise.

3.2. The interplay between the dynamical 
system and noise

In this subsection, we highlight the difference between dig-
ital and analog computations and the related role of noise.
This issue is of importance in order to properly address the
role of noise in excitable biological systems, like neural sys-
tems. Excitable systems are, in many cases, sensitive to noise,
because of the presence of a separatrix between states (i.e.,
the firing states and resting states) or the presence of an ex-
tremely nonuniform vector field. The latter occurs in phys-
iological situations described by the Hodgkin-Huxley equa-
tion. Furthermore, an interacting system of such elements
often possesses a critical regime of stability.

Some deterministic models with a few degrees of free-
dom used to describe the Belousov-Zhabotinsky reaction
system exhibit only periodic oscillations when studied on
digital computers, but the digital simulation of these mod-
els with a noise term as well as the analog simulation of 
the deterministic model exhibit “chaotic” oscillations also
(Showalter et al. 1978; Tomita & Tsuda 1979). These oscil-
lations have topologies and probabilistic properties that are
similar to those observed in the actual Belousov-Zhabotinsky
system (Roux et al. 1981).

Higher-dimensional dynamical systems like the KIII
model of Freeman and our model for the dynamic associa-
tion of memory also is sensitive to noise. The KIII model
possesses a tiny basin of attraction whose size is reduced to
the size of the digitizing unit (around 10216) due to attrac-
tor crowding as the number of coupled oscillators is in-
creased. Such a situation prevents locally unstable states
from appearing. Thus noise is necessary to obtain aperiodic
orbits stably (Freeman 1997). Our model, which will be in-
troduced in the next subsection, consists of two compo-
nents, the deterministic system and two kinds of noise
terms. The deterministic part consists of a multi-Milnor at-
tractor system whose stability is critical. Hence, without
noise terms, its asymptotic solution is like that of a multi-
stable state system in the sense that one of the Milnor at-
tractors is eventually selected, depending on initial condi-
tions. However, the dependence on the initial conditions in
the present case may be more complicated than in the case
of a multi-stable state system. A Milnor attractor is a kind
of generalized attractor that may be neutrally stable, as it
can possess unstable directions. For further discussion, see
section 3.4, and for a precise definition see the Technical
Appendix.

Furthermore, contrary to conventional belief, it is possi-
ble that digital computation will create spurious periodic
orbits (Yamaguchi 1997).

These points suggest that the digital computation of a
high-dimensional dynamical system with an excitable ele-
ment like a neuron or even a neuron population could lead
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Figure 1. (A) Unidirectional interactions between order param-
eters representing a deterministic system and noise. (B) Order pa-
rameters and the rest can be varied in a weak instability regime.
The components that play the role of noise change with time.
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to fatal error. Apparently, the simulation of excitable bio-
logical systems demands careful treatment regarding the
interplay between deterministic and stochastic components
of the system. In the context we consider, it will be fruitful
to study systems in regimes in which chaos does not exist
but chaotic behavior generated by noise appears and sys-
tems that can be stabilized by noise, as in the case of noise-
induced order in chaotic systems (Matsumoto & Tsuda
1983) and stochastic resonance in multi-stable systems (see,
e.g., Liljenström et al. 1996). These studies should be more
relevant to neurosciences than studies of low-dimensional
deterministic chaos, because the brain seems to employ a
mechanism by which it distinguishes ordered motion in
noisy signals.

3.3. A model for dynamic associative memory 

A nonequilibrium neural network model was proposed
(Tsuda et al. 1987) to investigate the neural correlate of the
dynamic association of memory and dynamic perception.
This network consists of two blocks, one (called block I)
containing a recurrent net and positive and negative feed-
back connections whose strengths are randomly fixed, and
the other (called block II) constructed from the same net-
work as in block I except for the addition of a specific neg-
ative feedback connection (see Fig. 2).

The skeleton of the model was based on Szentagothai’s
works (1975; 1983) on the network structure of the cerebral
cortex. It is likely that the skeleton possesses a structure
seen in the mammalian cerebral cortex. In the cerebral cor-
tex, the existence of a recurrent net is insured by a distribu-
tion of axon collaterals of pyramidal cells, though only a few
neighboring neurons are connected to any given neuron. A
Hebbian synaptic learning can be assumed in the network.
The existence of a positive and negative feedback to this
network is guaranteed by the distribution of stellate cells
and basket cells. These neurons can cause a dynamic
change of the collective internal states of pyramidal cells.
The specific negative feedback existing only in block II may
result from specifically formed inhibitory neurons like the
Martinotti cells or the axonal tuft cells.

There are several possibilities for the function of the spe-
cific inhibitory neurons. We give here three examples.

(1) A pyramidal cell fires, an inhibitory neuron may re-
ceive its output and as a result act to reduce the output.

(2) The inhibitory neuron may receive information cor-
responding to the internal state like the membrane poten-
tial of the pyramidal cell and then work to reduce the out-
put of the pyramidal cell with a strength proportional to this
internal state.

(3) If the pyramidal cell is in a steady state, the inhibitory
neuron may receive such information and then act to inhibit
the firing of the pyramidal cell.

In all of these cases, the role of the inhibitory neuron is
to temporarily hide the information contained in the state
of the pyramidal cell. In our model, the state of the pyra-
midal cell is reset to the initial state when the information
is hidden. The connections between two blocks may mimic
intra- and/or inter-cortical connections, where again Heb-
bian synaptic learning is also assumed.

Two modifications are made in order to see the effects of
dendritic and synaptic noise. First, extremely small additive
noise terms are introduced to represent dendritic noise.
Second, a type of stochastic renewal of dynamics is adopted
to represent synaptic noise. The second dynamics consists
of two independent rules for evolution of which one is se-
lected randomly at each time step. With stochastic dynam-
ics of this type, a neuron does not always output a pulse
even if the sum of the inputs exceeds the threshold at a cer-
tain time. At a given time, according to pre-determined
probabilities, either a particular neurodynamics is selected
(i.e., a threshold dynamics is employed), producing some
output, or simply the same output as that for the previous
time is used. The two maps used here thus constitute a con-
tracting IFS (iterated function system) (Barnsley 1988;
Tsuda 1991a). Therefore, the overall dynamic behavior is
determined by the parameter that indicates the degree of
the instability of the Cantor sets produced by the IFS. This
instability is due to the reset caused by the specific in-
hibitory neurons.

A “chaotic” transition among memories can occur, de-
pending on the values of the assigned probabilities for
choice of a specific neurodynamics. If such a probability
value is given by the inverse of the number of neurons, then
the model is equivalent to the Hopfield model (1982). Thus
the existence of steady associative recall is also certain. In-
creasing the probability, a chaotic transition, (dynamic recall)
occurs. This transition in block II is a bit artificial, because
of the presence of specific inhibitory neurons, whereas in
block I the transition is self-organized (i.e., it is an emergent
property of the network), since it occurs even in the case of
infinitesimal connection strength between blocks I and II.
It should be noted that memories can be represented by an
exotic attractor in spite of the fact that we use Hebbian
learning. If the system is composed of a recurrent net only,
then memories are represented by an attractor in the usual
sense. The appearance of exotic attractors is due to the in-
troduction of specific inhibitory neurons. In the next sub-
section, we extend the concept of the attractor. As we will
see, the exotic attractor here can be identified with a Mil-
nor attractor.

Choosing an appropriate coordinate, the transition can be
described by the critical stage of a circle map, which is
known as a typical chaotic map. In Figure 3A and B, we show
the one-dimensional map representation of the transition.

Tsuda: Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems

BEHAVIORAL AND BRAIN SCIENCES (2001) 24:5 797

Figure 2. Skeleton network for dynamic associative memory.
The network consists of two blocks, I and II. Block I consists of a
recurrent network of a pyramidal-type neuron and a network pro-
viding global feedback, whose strength is randomly fixed. Block II
consists of the same network as in block I with the addition of spe-
cific negative feedback connections.



The dimension of the transitions is a decreasing function of
the correlation among memories (Tsuda 1992). Compared
with this chaotic transition, a random transition among
memories occurs in a deterministic network with dendritic
noise only, which is depicted in Figure 3C and D. This situ-
ation is equivalent to the case of simulated annealing.

Following the study producing Figure 3, a similar chaotic
transition has been observed in other network models, for
instance, in chaotic neural networks with refractory periods
(Adachi & Aihara 1997; Aihara et al. 1990), in neural net-
works with dynamic masking (Körner et al. 1989; 1991), in
associative networks with memory of the limit cycle type
(Nara & Davis 1992; Nara et al. 1995), in associative cogni-
tive networks controlling robot movements (Tani 1992),
and in a modified Hopfield network for the travelling sales-
man problem (TSP) (Chen & Aihara 1995; Nozawa 1994;
Tokuda et al. 1997). (See also Horn & Opher 1996 as an in-
dependent but similar study.)

From these studies, it has been found that such chaotic
transitions can be used for problem solving in various fields.
We discuss below basic functions of networks exhibiting
this type of emergent property.

In this article, we would like to propose several hypothe-
ses regarding dynamic memory and perception, based on
the results of our investigation of several model systems.
Then, a basic network model is constructed using in one
case a modified recurrent net like the one treated in this
subsection, and in another case a unidirectional coupling (a
skew product) of an unstable network with a stable net-
work, where a chaotic network like the one treated here can
be adopted as the unstable network.

Before proceeding to the main topic, the introduction of
new concepts of high-dimensional dynamical systems is

necessary. The next three subsections are devoted to this.
First, in the next two subsections, we discuss the concept of
chaotic itinerancy, which was proposed in order to capture
the essence of complex transitions in high-dimensional dy-
namical systems.

3.4. Chaotic itinerancy, ruins, and Milnor attractors

We proposed the concept of chaotic itinerancy as a univer-
sal dynamical concept in high-dimensional dynamical sys-
tems (Ikeda et al. 1989; Kaneko 1990; Tsuda et al. 1987;
Tsuda 1991a; 1991b). In low-dimensional dynamical sys-
tems, which have been adopted as a tool for the interpreta-
tion of neural activity, four classes of attractors are known:
fixed points, limit cycles, tori, and strange attractors. They
are used to represent a steady state, a periodic state, a quasi-
periodic state, and a chaotic state, respectively. Chaos can
be characterized by the presence of a positive Lyapunov ex-
ponent, which represents the orbital instability defined by
the exponential increase of separation of nearby orbits on
average. With this characterization, chaos can exist also in
high-dimensional dynamical systems. One example is hy-
per-chaos, which is characterized by the presence of more
than one positive Lyapunov exponent (Rössler 1983). The
chaotic transition among memories discussed above, how-
ever, leads us another type of chaotic behavior.

Let us imagine a multi-stable system of high dimension.
As long as each of these stable states is represented by an
attractor, one attractor is separated from the others by sep-
aratrices, forming a basin of attraction. Then, the asymp-
totic behavior corresponds to one such attractor, depending
on the initial conditions. What happens following the desta-
bilization of the system? If the instability is sufficiently
strong, many chaotic modes appear, and consequently the
system moves toward a turbulent state, that is, a very noisy
macroscopic state. In this case, not even a “trace” of the
original attractors remains. (The present meaning of the
word “trace” is made clear below.)

If, however, the instability is not so strong, an intermedi-
ate state between order and disorder can appear. The dy-
namics of such a state may be regarded as those of an itin-
erant process, indicating a correlated transition among
states. Here, the state of the system before the instability
corresponds to an attractor, but after the appearance of the
instability this is no longer the case. In this case of weak in-
stability, a crucial characteristic is that a “trace” of the orig-
inal attractor remains in spite of the generation of unstable
directions in the neighborhood of the attractor. Such an
itinerant process often becomes chaotic. A destabilized at-
tractor is called an attractor ruin, and the corresponding
overall behavior is called chaotic itinerancy (Fig. 4, see also
Technical Appendix). In this situation, an attractor of the
destabilized system consists of a collection of attractor ru-
ins and itinerant orbits connecting attractor ruins. We refer
to this new type of attractor as an itinerant attractor.

Attractor ruins are closely related with Milnor attractors
(Milnor 1985). A Milnor attractor is a kind of generalized
attractor that may possess unstable directions. A Milnor at-
tractor is defined as a minimal limiting set whose initial
points possess positive (Lebesgue) measure, and hence the
presence of unstable directions is allowed (see Technical
Appendix for precise definition). It should be noted that a
Milnor attractor is a limiting set, but dynamical orbits can
escape from it due to small (even infinitesimal) perturba-
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Figure 3. (A) and (B) correspond to a one-dimensional map rep-
resentation of the chaotic transition among memory traces. (C)
and (D) correspond to a one-dimensional map representation of
a random transition due to an addition of noise. The abscissa de-
notes the internal state of the network at a discrete time step n,
and the ordinate the internal state at the next time step n 1 1. In
(A) and (C), strongly correlated patterns are learned, and weakly
correlated patterns are learned in (B) and (D). The functional re-
lation between the internal states for the present and the next time
step is clearly seen, especially in (A). Also, in (B), a skeleton of the
one-dimensional map is seen. This is not seen in the case of the
random transition ((C) and (D)). The one-dimensional map in (A)
provides an emergent dynamic rule for the chaotic transition.



tions. A trivial but typical example of a Milnor attractor is a
fixed point in a map at a tangent bifurcation (i.e., a saddle-
node bifurcation). Such a map and point are depicted in
Figure 5. In this Figure, the fixed point p is the unique as-
ymptotic state for any starting point. A similar structure of
phase space is observed in a one-dimensional map repre-
sentation of the chaotic association of memories (see Fig.
3A), but in the case of chaotic transitions, the Milnor at-
tractor collapses due to the nonlinear interactions and sto-
chastic renewal of the neurodynamics. Figure 6, which 
is a two-dimensional representation of the transition, also
shows the flow in the neighborhood of degenerate attractor
ruin. In this figure both the dynamic inflow and outflow of
orbits can be seen.

In the case of neither noise terms nor dynamical inter-
actions among variables, the orbits approach a Milnor at-

tractor, even if this Milnor attractor is embedded in a higher-
dimensional space. Instability due to dynamic interactions
or noise is thus necessary for the appearance of chaotic itin-
erancy. The structure of phase space in the neighborhood
of attractor ruins is complex, and this structure may be re-
lated to riddled basin boundaries often appearing in multi-
attractor systems (Grebogi et al. 1987; Kaneko 1997). It is
plausible that such a complex boundary is destabilized and
comes to chaotic orbits connecting attractor ruins.

A transition through chaotic itinerancy is topologically
quite different from a transition resulting from noise in
multi-attractor systems. In Figure 7 the schematic drawing
clarifying the difference is shown. In the latter, which has
been dealt with in previous studies, the external noise is
necessary to obtain the transitions. On the other hand, in
the former, the entire phase space is decomposed into sev-
eral subspaces, and in each subspace the system is stable, as
characterized by the Lyapunov exponents within each sub-
space, but in a direction normal to a subspace the system is
unstable, as characterized by the “normal” Lyapunov expo-
nents. Since for each subspace the normal Lyapunov expo-
nent is positive, the set representing an asymptotic state of
the dynamics restricted to each subspace is unstable, and
thus it is not an attractor in the conventional sense. It is,
however, a Milnor attractor.

One may think that a Milnor attractor is structurally un-
stable, as it exhibits such critical behavior as that appearing
in saddle-node bifurcations. It is not difficult, however, to
construct a model in which a change of parameter values
preserves such a critical regime. Actually, only the bifurca-
tion parameter in our neural network model is given by the
probabilities determining the renewal process of mappings,
and Milnor attractors are preserved through the change 
of the other system parameters, such as the connection
strength of nonmodifiable synapses and input biases. Thus
chaotic itinerancy is represented in a quite different man-
ner from stochastic transitions caused by external noise in
the attractor landscape. “Pasting” subspaces together
(shown in Fig. 7B) on the time axis according to the devel-
opment of the dynamics, one can understand the concept
of an epigenetic landscape, proposed by Waddington, in
which dynamics are embedded.

3.5. Information structure of chaotic itinerancy

The information structure of chaotic itinerancy may pro-
vide foundation for description of dynamic information
processing in the brain. Since chaotic itinerancy has actu-
ally been observed in animal motivated learning (see for ex-
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Figure 4. Schematic drawing of chaotic itinerancy. Dynamical
orbits are attracted to a certain attractor ruin, but they leave via an
unstable manifold after a (short or long) stay around it and move
toward another attractor ruin. This successive chaotic transition
continues unless a strong input is received. An attractor ruin is a
destabilized Milnor attractor, which can be a fixed point, a limit
cycle, a torus or a strange attractor that possesses unstable direc-
tions.

Figure 5. The simplest Milnor attractor in a one-dimensional
map. The absissa denotes a state at a discrete time step n, and the
ordinate a state at n 1 1. There is only one fixed point, p, in this
map. This fixed point is a unique asymptotic state for any starting
point.

Figure 6. A two-dimensional representation of a chaotic transi-
tion. Arrows denote the direction of motion. The dynamical orbits
approach a fixed point, but they then escape from it. Hence the
fixed point can be regarded as a ruin of a Milnor attractor.



ample, Freeman 1995a; 1995c; Kay et al. 1995; 1996), it
may be possible to use it for the dynamical interpretation
of cognitive processes. We investigated the information
processing of neural networks in the case that the network
exhibits chaotic itinerancy, drawing on the information the-
ory of chaos (Matsumoto & Tsuda 1985; 1987; 1988; Nico-
lis 1991; Nicolis & Tsuda 1985; Oono 1978; Shaw 1981). We
summarize this investigation below.

3.5.1. Dynamic retention of information. Information is
dynamically preserved in the chaotic behavior of a network
of nonuniform chaos (Matsumoto & Tsuda 1987; Tsuda
1992).

There exist neurons whose activity is characterized by 
the skewness of the distribution of interspike intervals
caused by the skewness of the distribution of membrane
potentials. The latter skewness stems from the excitability
of the membrane. For this kind of system, the amount of in-
formation contained in the initial distributions, which is
measured by the mutual information between states of the

system, slowly decreases in the form of an exponential or
power law in time. Here, the mutual information between
states indicates the information existing commonly in both
states. When information given in the form of probability
distributions is fed into a network of such chaotic neurons,
it is found that the information propagates in the network
without loss. This property has been demonstrated in a gen-
eral framework.

3.5.2. Learning capability. The learning capability of neural
networks increases in the presence of chaotic itinerancy.

This proposition is based on a numerical study of Heb-
bian learning (Tsuda 1992). Since Hebbian learning works
locally in phase space, it usually strengthens the stability of
learned patterns. Hence, superfluous learning representing
learning beyond a critical capacity of memory simply
strengthens one particular memory, or destroys most mem-
ories. Chaotic itinerancy as a dynamic process of a network
endows Hebbian learning with a different feature. Let us
define the critical memory capacity of a network as the
largest number of memories in the case of usual associative
network learning, in which only a single association of
memory for a single input occurs. Our model network ex-
hibits successive association represented by chaotic itiner-
ancy as well as this single association, depending on the
value of the system’s parameter, that is, the probability value
for choice of the dynamics. Thus, one can compare the
memory capacity in succesive association with that in single
association. We found about a fifty percent increase of the
capacity in the case with chaotic itinerancy, compared to the
case without chaotic itinerancy.

How can chaotic itinerancy save the network from “Heb-
bian break” described above? Since the state of the network
continually changes even under learning so that the dy-
namical orbits link memory states, the dynamical paths link-
ing memory states are also strengthened in spite of the lo-
cality of Hebbian learning. Thus, superfluous learning is
possible, implying that the memory capacity is beyond the
conventional capacity. This scenario has been verified by
another numerical experiment in which random transitions
among memory states induced by noise occur, though the
orbits become uncorrelated due to noise. Actually, we did
not find an increase of memory capacity in this experiment
(Tsuda 1992).

3.5.3. Pattern recognition. Neural networks exhibiting cha-
otic itinerancy can judge whether or not any input is close
to one of the memories.

Let us assume that a memory is represented by the state
of a neural network independently of context (this is the
vector representation). The closeness between two repre-
sentations can be expressed, for instance, by their inner
product. Numerical simulations have shown that the net-
work outputs a particular memory if the input is close to this
memory, whereas it outputs chaotic itinerancy if the input
is far from all memories (Tsuda 1992). This characteristic of
the network dynamics is independent of the type of em-
bedded patterns and the input patterns.

3.5.4. Pattern search. Neural networks exhibiting chaotic
itinerancy can perform an effective search of memory.

Distinct from a random search with noise and a simu-
lated annealing with sophisticated noise, a pattern search
with chaotic itinerancy is quite effective because of the for-
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Figure 7. The difference between transitions created by pro-
ducing chaotic itinerancy and by introducing noise. (A) A transi-
tion created by introducing external noise. If the noise amplitude
is small, the probability of transition is small. Then, one may try to
increase the noise level in order to increase the chance of a tran-
sition. But this effort is not effective because the probability of the
same state recovering is also increased as the noise level increases.
In order to avoid this difficulty, one may adopt a simulated an-
nealing method, which is equivalent to using an “intelligent” noise
whose amplitude decreases just when the state transition begins.
(B) A transition created by producing chaotic itinerancy. In each
subsystem, dynamical orbits are absorbed into a basin of a certain
attractor, where an attractor can be a fixed point, a limit cycle, a
torus, or a strange attractor. The instability along a direction nor-
mal to such a subspace insures a transition from one Milnor at-
tractor ruin to another. The transition is autonomous. Recently,
Komuro constructed a mathematical theory of chaotic itinerancy
with the same idea as demonstrated in (B), based on the investi-
gation of itinerant behavior appearing in the coupled map lattices
found by Kaneko (Komuro 1999).

A

B



mation of internal rule linking memories. In chaotic itiner-
ancy, a dynamical rule for linking orbits emerges. This rule
gives rise to a causal relation among memories. The nu-
merical calculations demonstrated that the memories close
to each other are likely linked. When one wishes to obtain
a certain memory state as an output of a network but has
only incomplete information regarding this memory, it is
necessary to search in memory space with only this partial
knowledge. A random search follows chance, and simulated
annealing requires sophisticated noise whose amplitude is
controlled by both the current state of the network and the
potential landscape. A search with chaotic itinerancy, on the
other hand, simply follows a dynamically changing rule cre-
ated in the network, which provides a dynamic relation
among memories. Thus the memory in question is output
after several linking stages. This characteristic of chaotic
itinerancy has actually been used to effectively solve the
travelling salesman’s problem (Chen & Aihara 1995; No-
zawa 1994; Tokuda et al. 1997) and also to provide an ef-
fective method for pattern recognition (Nara et al. 1995).

3.5.5. Simultaneous process of learning and recall. Neural
networks exhibiting chaotic itinerancy can simultaneously
perform learning and recall.

In conventional neural network models, the learning
phase and the retrieval of memories phase must be split in
order to avoid creation of spurious memories. In other
words, if these phases are not split, spurious patterns are
also memorized. As a result there is serious confusion of
“true” memories and “spurious” memories. On the other
hand, the presence of chaotic itinerancy permits this si-
multaneous performance of learning and retrieval. In this
case, no confusion results, since spurious memory states in-
evitably produced during the learning constitute dynamical
orbits which link “true” memories (Tsuda 1992; 1994).

3.5.6. Representation by process. Memory is represented
not by a state but by a process.

Memories formed in a network model via a Hebbian
learning algorithm are represented by states. When a
neural network is described by a dynamical system, the
state can be expresssed as an attractor. As we have shown in
studies of such models, however, memory is in general de-
scribed by a Milnor attractor, which is not always an attrac-
tor in the conventional sense. Then a “trace” such as that
consisting of an attractor ruin is a representation of mem-
ory and the memory trace is manifested through the transi-
tion process. Here the transition process, that is, the link-
ing process of ruins, is reasonable. In other words,
memories are realized only when they are linked to each
other.

3.5.7. Indistinguishability. Memory and information pro-
cessing cannot be distinguished.

Regarding Proposition 3.5.6, in our conscious experi-
ence, memories are always manifested in the current
process of cognition. This view has been proposed by a
number of people. Among them, Elman (1990), in dis-
cussing dynamic memory in the context of machine learn-
ing of language, asserted that memory is inextricably bound
up with the rest of the processing mechanism. Goldman-
Rakic (1996) also asserted, through her neurophysiological
studies, that a working memory can be classified as so-
called short-term memory, but it cannot effectively be dis-

tinguished from the working process. Our studies support
the plausibility of this indistinguishability.

Let us now discuss the biological significance of the
above propositions. The olfactory bulb receives odor input,
but the correlation between the bulb’s activity and the be-
havior of the animal in question stems not from external in-
put but from internal input coming from the olfactory cor-
tex, hippocampus, and amygdala (Bressler & Freeman
1980). This feedback information generates chaotic activity
of the bulb (Freeman 1987). Thus, the bulb can be re-
garded as an interface between the external odorant world
and the internal odor world. Here, dynamic behavior like
chaotic itinerancy is likely generated as an interfacial dy-
namics (Rössler 1987) which facilitates the formation of co-
ordinates where external inputs are compatible with inter-
nal images.

Such interfacial dynamics can be seen in other areas
where “higher” and “lower” level information meet. The
hippocampus-parahippocampus system is one possible such
area in the sense that here the neural activity of the frontal
cortex meets the sensory inputs. A neuron in the frontal cor-
tex generates only a few spikes per second, and even in the
sub-areas directly connected to the motor cortex a neuron
exhibits at most a few tens of spikes per second, whereas a
neuron in the sensory cortex can usually generate a few hun-
dreds of spikes per second. If a dynamical system or a noisy
dynamical system is responsible for the firing mechanism,
chaotic itinerancy is expected to exist, because it can also be
generated by the interaction of the dynamical system with
distinct timescales (Okuda & Tsuda 1994). Furthermore,
massive recurrent connections controlled by inhibitory neu-
rons in the CA3 of the hippocampus can act as a dynamic as-
sociative network like our model. Thus, we anticipate that
chaotic itinerancy facilitates the formation or collapse of
memory traces, controlled by a certain marker, generated
probably in the frontal cortex, such as “somatic marker” of
Damasio (1995; 1996). Actually, chaotic behavior has been
found by Hayashi in CA3 neurons (Hayashi & Ishizuka
1995), and it has also been shown that the spatio-temporal
representation of information is embedded in at least CA1
(Tsukada et al. 1996). Tsukada et al. found that the informa-
tion encoded in the higher order statistics (at least 2nd or-
der) of spike sequences can be extended as spatial informa-
tion of the hippocampus CA1. Taking into account these
points, it is likely that Propositions 3.5.1–3.5.5 hold in the
hippocampus-parahippocampus system.

Another possible area for interface is the inferotemporal
cortex, where a complex figure is represented by neural 
activity for some short period (Miyashita 1988; 1993;
Miyashita & Chang 1988).2 In order to perform a task, an
animal must retain an image of the key figure until the next
cue comes. Since retention can be viewed as a concurrent
process of storage and recall, it is likely that the experi-
mental conditions themselves force the animal to simulta-
neously carry out the write-in and the read-out of the in-
formation concerning this key figure. From the fact that
neural networks with chaotic itinerancy can dynamically
preserve an external input and can perform the concurrent
process of the write-in and read-out of information,
Miyashita’s finding suggests that Propositions 3.5.1 and
3.5.5 hold in the inferotemporal cortex. Such a concurrent
process can also be observed in a stable network driven by
a chaotic network. This point will be discussed in the next
subsection.
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3.6. SCND attractors and Cantor coding

Our next concern is another type of dynamic behavior that
generically appears in a chaos-driven contracting system.
Here we treat unidirectionally coupled networks, where an
unstable network generating chaotic behavior plays the role
of a “driver,” and a stable network plays the role of a “re-
ceiver.” In other words, this system consists of a stable net-
work driven by a chaotic network. This kind of network ap-
pears as a unidirectionally coupled network from CA3 to
CA1 (CA3 r CA1) in the hippocampus and also as a for-
ward network from the olfactory bulb to the prepyriform
cortex. These two systems are our concerns in this article.
A unidirectionally coupled network also appears more com-
monly in, for example, the prefrontal cortex r the motor
cortex, and the visual cortex r the temporal cortex. There
could be feedback loops in most areas, but it is plausible
that the forward pathways (looked at from primary sensory
levels toward higher cortices) are used to send a basic code
for the information, while the backward pathways are used
to send the code for the context. The presence of feedback
loops does not lead to a contradiction of the discussion be-
low if the forward system is contractive and the backward
system is unstable.

Chaos-driven contracting systems possess another type
of attractor called SCND (singular-continuous but nowhere-
differentiable) attractors (see Technical Appendix). It would
be particularly interesting to see the information structure
embedded in the stable network when the unstable net-
work acting as a driver exhibits a sequence of events via
chaotic itinerancy, because such a coding may be related
with the formation of “episodic” memory and primitive
“thoughts” processes.

The SCND attractor is an attractor represented by a
SCND function (Rössler et al. 1992; 1995; Tsuda 1996;
Tsuda & Yamaguchi 1998). The precise definition of a
SCND function is given in Technical Appendix; here it is
enough to think of a fractal image on a discrete set like a
Cantor set (see Technical Appendix) as a graph of such a
function. In chaos-driven contracting systems, no one can
see an attractor itself, since it appears in a slow dynamical
process in which the discrete set like the Cantor set is gen-
erated in some cross-section of a differentiable dynamical
system. Only finite subsets, each of which contains a finite
number of elements, can be observed.

The dimension of a SCND attractor exceeds its topolog-
ical dimension3 by more than 1, whereas the difference be-
tween two dimensions in a conventional strange attractor is
less than 1. Thus the SCND attractor is “fat,” distributed in
a wide domain of phase space. This dimensionality insures
the robustness of coding on the attractor, which is discussed
below.

Rössler found a mechanism for the emergence of this
kind of attractor (Rössler et al. 1992). In a simple neural
network model, we recently demonstrated the presence of
such an attractor (Fig. 8).

The SCND attractor generally appears in a contracting
space when contracting dynamics are driven by chaotic dy-
namics, provided that the speed of contraction in the for-
mer is lower than the largest speed of expansion in the lat-
ter. It could thus be observed in stable neurons or neuron
assemblies that are connected with chaotic neurons or neu-
ron assemblies.

In our study, a SCND attractor generated in the mem-

brane potential of an excitatory neuron is fragile with re-
spect to external noise, but that generated in the membrane
potential of an inhibitory neuron is robust with respect to
noise. Therefore, it has been predicted that the SCND at-
tractor will be observed in the potential of inhibitory neu-
rons which are driven by chaotic neurons (Tsuda 1996).

Nearby orbits in phase space become separated due to
expanding dynamics and approach each other again due to
contracting dynamics. In chaotic dynamics, nearby orbits
become separated on average. This results in the presence
of a positive Lyapunov exponent. From the information
theoretical point of view, expanding dynamics can act as the
read-out process of information, and contracting dynamics
can act as the write-in process. Because in chaotic dynam-
ics the expanding and contracting phases depend on the po-
sition in phase space, the read-out and write-in processes
appear successively in the time series. The presence of a
positive Lyapunov exponent indicates that the overall dy-
namics on average represent the read-out process of the in-
formation contained in the initial conditions.

On the other hand, in chaos-driven contracting dynam-
ics, the information read out by chaos is written in the con-
tracting subspace by the contracting dynamics. More con-
cretely, symbol sequences created by chaos are encoded as
an element of the set in the contracting subspace. A code
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Figure 8. (A) A schematic drawing of the model exhibiting
SCND attractors consisting of three neurons/neural networks:
one is a chaotic neuron/neural network and the other two are sta-
ble excitatory and stable inhibitory neurons/neural networks. The
stable neurons/neural networks’ activities form a contracting sub-
space. (B) An example of SCND attractors.



table is thus formed on the SCND attractor. Actually, the
one-to-one correspondence between the symbol sequence
generated by chaos and the position of Cantor elements has
been elucidated (see Fig. 9).

The coding scheme in this study reminds us of the cod-
ing scheme employing a fractal image generated in iterated
function system (IFS) (Barnsley 1988), and also of the cod-
ing scheme employing the Cantor set in recurrent neural
networks (RNN) (Elman 1990; 1991; Kolen 1994a; 1994b;
Pollack 1991). The former work presents a method of com-
pressing spatial patterns, whereas the latter works present
a method of encoding temporal patterns. According to the
totally disconnected IFS theorem proved by Barnsley, if and
only if there is no overlap in fractal images constructed by
any two invertible maps which constitue a contacting IFS,

the IFS is totally disconnected, and hence the unique cod-
ing. Kolen (1994a; 1994b) proved that a type of second or-
der RNN known as sequential cascaded network is equiva-
lent to the set of affine transformations of an IFS if the
transformation function is linear, so that the theorem is ap-
plicable to Cantor coding even for temporal patterns.

In our system – a chaos-driven contracting system – a
strong contraction can allow the existence of non-overlap-
ping elements of the SCND attractor, but overlapping is de-
termined by the nature of the nonlinearity responsible for
the existence of the chaotic behavior in the system under
study. Thus it is not easy to quantify this condition. If we do
not use chaotic dynamics but simply a random number gen-
erator as the driver, this overlapping problem can easily be
solved, since the only condition for the existence of a unique
coding scheme is the strength of contraction. On the other
hand, if a contracting IFS is used as the receiver, the exis-
tence of a unique coding scheme is possible even in the case
that chaotic dynamics are used as the driver, due to the
presence of forbidden symbol sequences resulting directly
from the grammatical structure of symbol sequences in-
herently embedded in the chaotic dynamics. With the same
contraction strength as in the above case, the use of uncor-
related random noise, such as white Gaussian noise, may
bring about overlapping fractal patterns. In such a case, the
coding is only defined up to some finite number of signifi-
cant digits (Ichinose et al., preprint; Ryeu et al., in press).

In the context of the machine learning of languages, El-
man (1990) reconstructed a hierarchical structure embed-
ded in the input word sequences as snapshots of the in-
ternal states of some RNN during the process of the input.
Pollack (1991) found that a Cantor coding can be realized in
recurrent neural networks as a dynamical recognizer. These
two studies are within the framework of PDP (parallel dis-
tributed processing) (Rumelhart & McClelland 1986). Their
noteworthy finding is that the hierarchy of a Cantor set is
generated in the phase space of the neural network which
can encode a grammatical structure of English sentences.

The noise effects for the SCND attractor can be investi-
gated using physical quantities such as the dynamical en-
tropy and mutual information. These quantities have been
computed up to the limit of digital computations, which is
demanded to obtain precise values (Tsuda & Yamaguchi
1998). For a small amount of noise (up to ,1024 for a sys-
tem size of 1), it was found that these quantities do not
change to a precision of 6 significant figures. On the con-
trary, these quantities decrease, as increasing the noise level
up to ,1023. The computations at this noise level reached
the computation limit. Although the mechanism responsi-
ble for this kind of stability of the attractor with respect
to noise is still under study, it is certain that the state
corresponding to a Cantor set can be observed even in
noisy environments. In dynamical systems without noise, a
measure-zero set, like a Cantor set, can be observed as a
limiting state if it is dynamically stable. If the contraction
rate in a dynamical system with noise is sufficiently large,
compared with the amplitude of noise, even a measure-zero
set is observable. Furthermore, since the SCND attractor
is widely distributed in phase space because of its dimen-
sionality mentioned above in contrast to a conventional
Cantor set, the size of the overlapping region due to noise
is reduced. This results in a reduction of the ambiguity of
the code. These factors account for the effectiveness of the
code on a measure-zero set.
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Figure 9. The hierarchical structure of an SCND attractor rep-
resented by symbol sequences encoding chaotic orbits. (A) The
chaotic neuron map (Aihara et al. 1990) adopted here can produce
symbol sequences consisting of, e.g., 0, 1, and 2. The abscissa de-
notes the states at discrete time steps n, and the ordinate the states
at n 1 1. Thus the figure is a graph of a one-dimensional map
which can represent the activity of a chaotic neuron. Below the
chaotic neuron map, the first, second and third transformations of
the interval are shown, accompanied by the symbol sequences in-
dicating the labeled orbits starting from the points in the respec-
tive subintervals. (B) An example of Cantor coding. Each cluster
in the Cantor set has a code generated by a chaotic neuron map.
Each cluster contains further depths of hierarchy of code. The
second depth is shown in the figure by splitting each cluster.



Our concern with regard to robustness is maintenance of
the Cantor coding in the presence of external noise. Since
the SCND attractors can be sparsely distributed in phase
space because of the dimension gap mentioned above, a
code that is fragile with respect to noise easily drops in the
Cantor gaps (Siegelmann & Sontag 1994), where no code
exists. In this sense, one can judge if a perturbed pattern is
the correctly encoded one. Furthermore, orbits slightly
perturbed by noise promptly return to their original posi-
tions where the dynamical orbits possesses a Cantor code
due to the effect of contraction. Therefore, one can observe
a Cantor code on the cross-section even in a noisy environ-
ment if the rate of the impingement of noise on the system
is low compared with that of the development of dynamics.
The numerical studies of entropy and information men-
tioned above also indicate the robustness of the coding
scheme, as evidenced by the invariance of entropy and in-
formation with an addition of a small amount of noise.

4. Hypotheses for dynamic memory 
and perception

4.1. Dynamic memory and Cantor coding 
in the hippocampus

Using the concepts of high-dimensional chaotic dynamical
systems discussed in the previous section, we would like to
propose here a model for the formation of sequences of
sensory events that may suggest the neural correlate of
episodic memory (Mishkin 1982). For this, we are con-
cerned with the dynamic behavior of hippocampal net-
works.

The activity of hippocampal CA3 has been analyzed un-
der isolated but close to physiological conditions, and it was
concluded that it is highly probable that the CA3 pyramidal
neurons can exhibit chaotic activity under physiological
conditions (Hayashi & Ishizuka 1995). If the CA1 neurons
are stable in the absence of any input and the CA3 neurons
are chaotic, the contracting space defined by the CA1 net-
work will be driven by the chaotic CA3 network via the
Shaffer collaterals. It was also recently found that the in-
formation embedded in the higher statistics of temporal
pattern inputs can be encoded in the real space of CA1
(Tsukada 1994; Tsukada et al. 1996).

The situation can be created in which the positions of el-
ements of the Cantor set in phase space indicate the mag-
nitudes of membrane potentials of neurons, that is, the
number of spikes, or local EEG. A local difference of mag-
nitudes in real space brings about a global difference in 
the network activity via the propagation of waves. Hence
the Cantor code in phase space can also be embedded in
the spatial pattern of the network activity. Since there are
recurrent circuits from the CA1 neuron to the CA3 neuron
via the neocortex and the parahippocampal area, the dy-
namics on the recurrent circuits over such a wide range may
work cooperatively to accomplish both encoding and de-
coding in a single process.

Concerning the long-term potentiation (LTP) in CA1,
various artificial stimulations applied to the Shaffer collat-
erals of the CA3 pyramidal neurons have also been investi-
gated. It was found that chaotic input with long auto-
correlation (i.e., intermittent chaos) are the most effective
for LTP (Tatsuno & Aizawa 1997; 1999).

We here use a simple model as a skeleton network. As a

model for the CA3 chaotic network, we adopt our model of
dynamic associative memories discussed above or modified
version of it. Using this kind of model, we characterize the
dynamic features of the CA3 network and its functional re-
lation. As a model for the CA1 network, we employ a stable
network consisting of excitatory and inhibitory neurons. An
excitatory neuron receives CA3 outputs via Shaffer collat-
erals and also receives the output of a few neighboring in-
hibitory neurons. An inhibitory neuron, on the other hand,
receives the output of each excitatory neuron.

In our framework, the CA3 network is a device for the
generation of a sequence of patterns. The existence of such
a sequence is insured by the presence of chaotic itinerancy.
The distance between (or the closeness of) memories rep-
resented by a spatial pattern of neuron activity can be spec-
ified in CA3 by the extent of attracting areas in phase space.
Defining the distance between sequences is, however, im-
possible in CA3, because only the states of a network are
basic variables in such a phase space. Therefore, it is rea-
sonable to conjecture that such a definition can only be
made in CA1. In fact, it can be made by means of the hier-
archies embedded in the SCND attractors, in the same way
shown in Figure 9. We have verified the existence of such
a hierarchical coding in the model CA1 network of any tem-
poral sequence given by the stimulations of the Shaffer col-
laterals. We have also verified the existence of hierarchical
coding in the model CA1 network when the model CA3
network produces a temporal sequence of patterns linked
by chaotic orbits. The details of this study will be published
elsewhere (Tsuda & Kuroda, in press).

4.2. Dynamic memory and Cantor coding 
in the olfactory system

The hard-wired condition necessary for the presence of
SCND attractors could hold in many areas of the brain.
Freeman (personal communication) pointed out as a possi-
ble such area the prepyriform cortex for olfaction, which re-
ceives synaptic connections from the olfactory bulb, where
dynamic activities such as chaotic itinerancy appear. In the
prepyriform cortex, the network consisting of excitatory
and inhibitory neurons could provide stable behavior and
thus could form a contracting space. Thus SCND attractors
will be observed in the prepyriform cortex.

Memories of olfactory sensation are created in the olfac-
tory bulb. These memories are expressed as chaotic activi-
ties of neuron assemblies. Odor memories may be linked
with higher level’s functions as well as being directly linked
with emotion. Thus odor memories could be associated with
episodic memories. Since olfactory information is sent also
to the entorhinal cortex, olfactory information is likely ab-
stracted, at least at the level of the prepyriform cortex (see
also Fig. 10). Olfactory information could be encoded and de-
coded concurrently by the combination of chaotic activities
in the bulb and SCND attractors in the cortex. In this process,
the entorhinal cortex, whose activity also exhibits itinerant
transitions among attractor ruins, may act as a type of a 
history-dependent continuous perception (Kay et al. 1996).

4.3. Episodic memory

Based on the above detailed theoretical and numerical con-
siderations, we now propose an interpretation of the for-
mation of episodic memory (Fig. 11).
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Episodic memory is memory concerning the information
of individual experiences (Tulving 1972). Here, an “indi-
vidual experience” is not a series of events which one actu-
ally experiences in daily life, but, rather, is identified with
the structure of dynamic neural activity created internally
that is associated with the sensory input during such events.
Thus such an individual experience (or “episode”) is de-
pendent on the spatio-temporal context of the individual. It
is convincingly argued in reports on H.M. (Scoville & Mil-
ner 1957) and R.B. (Zola-Morgan et al. 1986) that the hip-
pocampus is responsible for episodic memory.

In the modeling, it is important to note that the structure
of CA3 is very similar to that of the neural network model
of associative memory (see, e.g., Amari 1977; Kohonen
1978). Since the work of Marr (1971) there have been many
model studies with this structural similarity. These studies
are based on the idea that the hippocampus temporarily re-
tains episodic memory as an associative memory (see for ex-
ample McClelland et al. 1995; Treves & Rolls 1994). Since
conventional associative memory models possess attractor
dynamics only, an additional mechanism is necessary to cre-
ate temporal patterns which may represent episodes. As
seen in sections 3.3 and 3.4, the presence of inhibitory in-
terneurons satisfies the condition for the generation of
temporal patterns. It is known that such inhibitory neurons
exist in CA3 (Buzśaki 1996). Taking these points into ac-
count, in the present article we further develop the theory
of episodic memory.

The situation we consider is that in which a given itiner-
ant chaotic sequence generated by one network gives rise
to a unique Cantor coding in another network. Actually, this
situation is insured in a certain type of simple neural net-
work model. Furthermore, in our theory for the formation
of episodic memory, we associate the above mentioned
chaotic network with the CA3 network and the stable one
with the CA1 network.

A variety of memory sequences is created in CA3 by
means of chaotic itinerancy. In some short period, say on
the order of a hundred milliseconds, only a few transitions
may occur. For instance, there may be a transition from (se-
mantic) memory P1 to P2 via intervening chaotic behavior.
We label this transition a2a1. This label can be embedded
in the Cantor set generated in the space of the membrane

potential of CA1. This label is also hierarchically repre-
sented by one of the subsets of the whole set. This code is
sent to the entorhinal cortex and also to the neocortex.
Among the diverse pathways to the neocortex, the pathway
to the prefrontal cortex is emphasized here by the property
of the close functional relations to the motions, which may
be a key to the formation of episodic memory. The connec-
tions from CA1 to the entorhinal cortex shown in Figure 10
are used to send this kind of information (see also Tsukada
1992).

It is likely that in the neocortex and also in the entorhi-
nal cortex such a code is stored. Although there must be a
difference between the codes of the two cortices – such as
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Figure 10. The information flow in the olfactory system (modi-
fied from L. Kay 1995). The meaning of the symbols follow. M:
Mitral cells, G: Granular cells, EC: Entorhinal cortex, AON: An-
terior olfactory nucleus, PPC: Prepyriform cortex, and DG: Den-
tate gyrus.

Figure 11. A hypothetical information flow in the formation of
episodic memory. Sensory information is temporarily stored as a
pattern of the network activity in CA3. However, it is not repre-
sented by a conventional attractor, but rather by an exotic attrac-
tor, such as a Milnor attractor. The metric in pattern space is mea-
sured in CA3 by the extent of the basin of attraction. Because of
the instability of Milnor attractors, pattern sequences are gener-
ated. These sequences denote the sequence of the experience of
sensation. The metric with respect to pattern sequences is defined
in CA1 by the Euclidean distance between elements of the Can-
tor set. This information is sent to the entorhinal cortex and also
to the neocortex, where a short sequence of patterns appearing as
a result of the transitions during a short period of time (say 100
msec) is represented by, for example, a fixed point of the Milnor
type. The transition between these Milnor attractors in the cor-
tices represents a concatination of the transitions. If the most re-
cent pattern appearing in the concatinated sequence is success-
fully followed by a current pattern in CA3, the correct sequence
of sensory experience can be reconstructed.



abstract and inferential in the neocortex and emotional and
sensational in the entorhinal cortex – two cortices may play
similar roles for the hippocampus, namely giving the con-
tent of information to the hippocampus (Buzśaki 1996). We
thus think that the coding scheme in the two cortices must
be similar, though the content, that is the meaning, differs.

Let us assume that the cortices process information tem-
porarily stored in the unstable sub-networks which have
structure similar to that of the hippocampus CA3. Then, in
the cortices, labels like a2a1 can be expressed as a fixed
point attractor in Milnor’s sense. If an input to hippocam-
pus CA3 with such a label a2a1 from the cortices coincides
with the instability of P2 in CA3, then the next transition in
CA3 (namely from P2 to, for example, P3) is reinforced. If
no coincidence between them exists, the input from the
cortices to CA3 will disturb the transition process itself in
CA3. Another mechanism seems to be necessary in order
to avoid the possibility that the matching occurs accidently.
A “somatic marker” hypothesized by Damasio (1995; 1996)
may provide a mechanism controlling chaos, as mentioned
in section 3.5.

The memory sequence P1P2P3 is encoded in CA1 in a
deeper level of the hierarchy of set than in the sequence
P1P2. Thus the code a3a2a1 embedded in the set in CA1 is
sent to the cortices. This stimulation can afford the transi-
tion from one fixed point to another, which are expressed
by the codes a2a1 and a3a2, respectively, in the cortices.
This transition reinforces the correct sequence of memo-
ries. It may provide a mechanism of the formation of
episodic memory.

We have highlighted so far the Cantor coding of the tran-
sition process. One may also propose the Cantor coding of
another type, for example, the Cantor coding of memory se-
quence itself. Then, chaos linking the memories does not
manifest in the code sequence itself. We, too, can construct
such a model (Tsuda & Kuroda, in press).

In the formation of episodic memory, the relation be-
tween pattern sequences in CA3 and the geometory of the
Cantor set in CA1 may be flexibly altered, whereas in cor-
tices the alteration of the representation due to structural
changes will be slowly varied. In this respect, the hip-
pocampus may be likened to a blackboard: The timing be-
tween writing and erasing on this hippocampus “black-
board” and slowly varying transition among symbols in the
cortex is a key to the formation of episodic memory. This il-
lustrates the necessity of a long period of time, from a few
years to a lifetime, for the complete formation of episodic
memory, as can be understood by considering the existence
of retrograde amnesia for one to three years as well as an-
terograde amnesia after hippocampal deprivation (Scoville
& Milner 1957), and also after sustainment of a CA1 lesion
(Zola-Morgan et al. 1986).

Finally, it is interesting to note the recent work of Tani
(1998). Tani found that chaotic behavior appears in the in-
ternal states of his recurrent network which controls robot
learning when conflicts arise between the bottom-up per-
ception and the top-down prediction. Tani interpreted this
chaotic neural activity as an indication of awareness. In our
theory, chaos is considered to be a reflection of not only
conflicts between the hippocampal and the cortical activity
but also of intentionality (Freeman 1999) from the cortex
to the hippocampus (also see the Appendix). Furthermore,
chaotic itinerancy among semantic memories may reflect a
perceptual drift, and therefore it may be the case that the

interplay between the cortex and the hippocampus pro-
duces episodic memory. If this is true, then the existence of
a variety of temporal sequences of semantic memories
would be insured in CA3, and the temporal sequences
would be encoded hierarchically in phase space of CA1.
Also, the Cantor set appearing in CA1 would provide a mea-
sure of “distances” between episodic memories.

5. Concluding remarks and outlook

We discussed in this article dynamical models of dynamic
associative memory and episodic memory in which chaotic
itinerancy and SCND attractors are linked in terms of the
Cantor coding. In relation to this, a dynamic mechanism for
the concurrent process of the read-out and write-in of in-
formation was proposed. The indistinguishability of mem-
ory from information processing – thus, perhaps, from cog-
nitive processes – was suggested. This dynamic mechanism
and indistinguishability seem to characterize the human
cognitive process.

We emphasized the biological significance of chaotically
itinerant attractors in high-dimensional systems, but one
can raise the criticism that “chaotic” behavior observed to
this time in the brain may not be chaotic in the mathemat-
ical sense (Freeman 2000; Rapp 1995). Referring to the dis-
cussion in sections 3.1 and 3.2, it should be noted that the
phenomena we can observe in laboratories can clearly be
described as the chaotic behavior of noisy systems, in other
words, chaotic behavior in a dynamical system with additive
or multiplicative noise or stochastic renewal. Thus it would
seem that chaos does exist in the real world in some form,
although what we actually observe as chaotic behavior is de-
pendent on our point of view. Also, we note that in an ex-
citable system with sensitive dependence on noise, noisy
chaotic behavior can appear due to the interplay between a
prechaotic state and noise. Even if mathematical chaos
does not exist in such an excitable system, the interplay of
the system with the noise may create “chaotic” behavior
possessing topology similar to that of some truly mathe-
matically chaotic behavior. For this reason, the model stud-
ies are effective to understand the causation underlying
chaotic phenomena.

Our theory supports the notion of the dynamic brain,
which has been investigated in various contexts, as men-
tioned in the Introduction. The chaotic aspects of the brain
described by our theory may change the conventional in-
terpretation of brain functions (see also Freeman & Núnez
1999).

Since Brodmann introduced functional maps of cerebral
cortex, it has been believed that it is decomposed into dif-
ferent conceptual areas, each of which is responsible for a
specific single function. This belief resulted in the conclu-
sion that the cortical functions can be hierarchically repre-
sented by a combination of subfunctions corresponding to
these areas (or simply the “sum” of them). This concept of
functional localization may lead to another concept that a
single neuron is responsible for merely a single representa-
tion of information, namely, the concept of “single neuron-
single representation.”

Although much experimental evidence has been pub-
lished to support the presence of such a neuron, its exis-
tence is still questionable, since other experiments strongly
suggest the multiple function of single neurons (Dinse
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1990; 1994). The multiple function of an area was also re-
ported for Broca’s area (Paulesu et al. 1993). Broca’s area
has been thought to be related only with writing and artic-
ulation of speech, but the activation of the area by inner
speech alone has been observed (Inui 1997; 1998; Paulesu
et al. 1993). Inui (1997) has pointed out, based on the ex-
perimental report of Imamura et al. (1996), that Area 45, a
portion of Broca’s area, must be responsible not only for the
prediction of phonetic sequences but also for the learning
and prediction of motor sequences. It can be concluded
that the multiple function observed in Broca’s area is the 
result of dynamic interactions between Broca’s area and
neighboring areas (Inui 1997; 1998).

The notion of hierarchical organization of functional
modules and the notion of a direct mapping of the infor-
mation regarding an environment into the states of a neural
net are based on the conventional systems theory, which are
summarized as follows:

1. Each function is allocated to a respective element of
the system, namely to a neuron or a module. A higher func-
tion is obtained by unifying or binding distinct lower func-
tions.

2. A feature of external stimuli (for instance, the orien-
tation of lines, edges, color, etc., for vision) is directly
mapped to each neuron or to each module. The processing
of information proceeds, taking the combination of such
features, which may be realized through synaptic learning.

The dynamic behavior discussed here may, however, lead
us to consider aspects of the brain that sharply contrast with
those considered within the conventional framework,
namely the chaotic aspects of the brain. These can be sum-
marized as follows:

(i) The function of a system’s element is dynamically de-
termined so that the entire function of the system is real-
ized. Since this entire function varies in a manner deter-
mined by the changing environment and the system’s
purpose, a function of each element cannot be uniquely de-
termined. Therefore, the functional unit can be varied. Even
if a module is organized as a subsystem, the hierarchical
structure of modules will not be seen, because the bound-
ary between modules is inevitably altered due to the change
of relations among elements which depend on the entire
function. Thus “heterarchical” structure, referred to as
“moiré patterns” by Szentágothai (1978) appears.

(ii) Higher information in the brain is not always repre-
sented by the combination of lower information but, rather,
represented by dynamic properties emergent via the
chaotic activity of neurons and/or the neural network.

Furthermore, if the brain is composed of static functional
modules, the organization of distinct pieces of information,
or the binding among them (the so-called the binding prob-
lem), must be a central issue. If we take the dynamic view-
point, on the other hand, the binding problem might not be
a real problem but simply a pseudo-problem, because in
this case information representation is dynamically realized
as a whole, based on the spatio-temporal organization of the
network.

Finally, it is interesting to note the similarity of the
chaotic aspects of the brain we have studied with the notion
of dynamic equilibrium hypothesized by Ramachandran
(1998). Ramachandran found evidence of drastic changes
of “functional modules,” which agree with the concept of a
dynamic brain. In a dynamic equilibrium state, there is a
time dependence of the states of neurons or neuron as-

semblies, as determined by the states of neighboring neu-
rons. Consideration of this concept requires that we change
the interpretation of a “functional map.” The term “dy-
namic equilibrium” is self-contradictory, since an equilib-
rium state cannot be dynamic, as no net flow of energy or
matters exists. The implication of the term “dynamic equi-
librium” is not, however, inconsistent with our assertions.
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Appendix

Chaotic dynamics associated with inference processes

In this appendix, we briefly describe the recent developments in
studies on the relation between dynamical systems and logic, in
particular the relation between chaotic behavior and deductive in-
ference processes (Basti & Perrone 1992; 1995; Grim 1993; Nico-
lis & Tsuda 1985).

The dynamical systems studies whose purpose was to relate the
neural activity to inference processes have been highlighted since
the cybernetics studies of McCulloch and Pitts (1943).4 They
adopted classical logic, and used a so-called “formal neuron,”
which is now called a “McCulloch-Pitts neuron,” as a dynamical
device to simulate “thought.” A neural network consisting of neu-
rons of this type of can carry out a universal computation in the
sense of Turing. In order to capture the complexity underlying in-
ference processes, however, it seems that we need more complex
dynamical systems that provide a basis for analog computations
and also a method of generating “symbols” out of dynamic behav-
ior. For this purpose, we adopted Tukasiewicz logic, which is de-
fined on a continuous space of truth values. Using this type of
logic, we formulated several dynamical constructs, including a
meta-dynamical system, which is defined as a set of dynamical
transformations of a function whose arguments are dynamical
variables. (For further discussion, see below and Tsuda & Tadaki
[1997]. Also see Kataoka & Kaneko [2000a; in press b] for a model
of meta-dynamics referred to as a [mathematical] functional map.)

We are concerned with neural activity which is assumed to rep-
resent mental states. We assume that such neural activity can be
represented by vectors. In our theory, “true” and “false” are rep-
resented by orthonormal vectors, which thus span a subset of two-
dimensional space represented by a unit square. We consider a
projection of neural vectors into this two-dimensional space. The
component of such a projected vector in the direction of “truth”
represents the truth value of the corresponding neural activity
(see also Mizraji & Lin 1997). This truth value can be regarded as
a dynamical variable in the case of dynamic neural activity.

Taking into account the successive processes of the logical
transformation from a premise to a consequence and the substitu-
tion of this consequence for the subsequent premise, one may de-
scribe an inference process as a dynamical system (Grim 1993;
Mar & Grim 1991). In the framework employing such processes
formulated by McCullogh and Pitts (1945) and recently devel-
oped by Mar and Grim (1991), and Grim (1993), a contradictory
statement is represented by a limit cycle, while a consistent and
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self-referential statement is represented by chaos (see also Nico-
lis & Tsuda 1985). This formulation includes the idea that since a
person’s capability for self-reference enables him or her to carry
out self-reflective action, such a capability seems to guarantee at
least the capability of deductive inference. It is reasonable that
chaos would emerge in such a process, and this is an assertion of
Nicolis and Tsuda, and also an assertion of Grim and Mar. In all
theories mentioned above, the direction of scalar projection re-
mains undetermined. In the brain, this direction surely depends
on awareness and attention. Its determination is believed to be re-
lated to intentionality (Basti & Perrone 1995; Freeman 1995a;
1995b; 1999), but such considerations are beyond the scope of the
present theory.

In the manner discussed above, deductive inference processes
can be described by a certain class of chaotic dynamical systems.
In any given case, this class is determined by the type of presup-
posed logic. On the other hand, the brain describes the dynamics
of the real world surrounding it, and such a description itself must
be dynamic. We have attempted to formulate such a description
(Tsuda & Hatakeyama 2001; Tsuda & Tadaki 1997). In our for-
mulation, the dynamics of the description are functional dynam-
ics, like those briefly mentioned above. In an extreme case, these
functional dynamics possess a fixed point, which implies the exis-
tence of a fixed description, independent of the environmental dy-
namics. This description may be expressed as an “autistic state.”
In another extreme, unrealistic case, the functional dynamics are
identical to the environmental dynamics. In this case, the brain ac-
tually copies the dynamics of the environment. The dynamics ex-
hibited by models of machine learning represent such copies.

The actual description generated by the brain should be some-
where between these two extreme cases. If such a description of
dynamics follows Lukasiewicz logic, the functional dynamics will
be chaotic (Tsuda & Tadaki 1997). Such a functional dynamical
system can be compared with the chaotic dynamical system with
fuzzy distributions proposed by Grim (1993).

Recently, this manner of thinking has led us to the study of a dy-
namical description of syllogism. (Actually it is better to refer to
this as modus ponens as it is treated as a separation rule.) We have
constructed a theory describing tasks performed in cognitive ex-
periments (Tsuda & Hatakeyama 2001). This theory can also be
applied to experiments in which one investigates the correlation
between deductive inference processes and internal neuronal dy-
namics measured as the neural activity at the behavioral level. In-
terpreting logic in terms of dynamical systems thus should be
fruitful as a complement to studies of the emergence of logic from
dynamic behavior.

Technical Appendix

1. Order parameters and macro-variables

The term “order parameters” originally appeared in studies of
phase transitions in condensed matter physics. These order pa-
rameters are used to capture the behavior of a macroscopic or-
dered state emerging from large fluctuations in a critical regime.
For instance, in ferromagnetic materials, in the absence of an ex-
ternal magnetic field the magnetic moment of each atom is ran-
domly distributed above the Curie temperature, so that the net
(average) magnetic moment is zero, while below the Curie tem-
perature, a nonzero net magnetic moment appears due to the
spontaneous cooperative behavior of atoms. The order parameter
used for such a system is defined as the net magnetic moment,
which indicate the degree of order. In an equilibrium state, this
order parameter is a constant. In relaxation processes from near-
equilibrium states, the time evolution of an order parameter is ex-
pressed by an evolution equation. The use of such equations can
be extended to the case of ordered motion in far-from-equilibrium
states and also to the case of many order parameters.

An ordered state can be described by a few degrees of freedom

(a few macro-variables), which emerge in the evolution of the sys-
tem out of many degrees of freedom. These few degrees of free-
dom are called “order parameters.” This concept has been ex-
tended to transitions and bifurcations in far-from-equilibrium
systems. Haken formulated the slaving mode principle (regarding
the behavior of such systems), which is mathematically equivalent
to the center manifold theorem. This principle asserts that order
parameters (slaving modes) enslave the remaining modes (slaved
modes) (see for example Haken 1983). Qualitatively, the manner
of thinking employed in this context is that we describe a total sys-
tem only in terms of its slow motion behavior, eliminating fast mo-
tion, and we do this by defining order parameters as the variables
governing the slow motion on the center manifold. It should be
noted that “slow” and “fast” are used here in a relative sense. In
reaction-diffusion systems, for instance, where spatio-temporal
organization is taken into account, there is no clear distinction be-
tween slow and fast modes. In such a case, by taking into account
the diffusion term too as a perturbation, one can extract the
macro-variables describing gentle fluctuations.

Because the center manifold theorem (or the slaving mode
principle) does not apply to the case of chaotic motion, the macro-
variables describing chaotic motion cannot be used as order pa-
rameters. In chaotic motion, there exist both “macro-modes,” rep-
resented by low-frequency components, and “micro-modes,”
represented by high-frequency components. Hence, it might
seem that after rescaling time an “order parameter” would
emerge. In chaotic motion, however, there is no clear boundary in
frequency space that distinguishes a low-frequency behavior from
high-frequency behavior, because of the continuous nature of the
spectrum. We note, however, that in chaotic itinerancy, the slow
motion exhibited around attractor ruins seems to be distinguish-
able from the fast motion associated with transitions among ruins.
We believe it is important to resolve this conceptual discrepancy.

2. Attractors in the conventional sense and the Milnor sense

Attractors have been defined by using the concept of attracting
sets. Let X be a compact, or at least finite dimensional, smooth
manifold. Let the development of orbits in phase space be given
by a continuous map or a diffeomorphism f : X r X. For a set A,
the trapping region N . A is defined as the region satisfying A ,
f(N) , N. A set A is called an attracting set when

f(i) (N) 5 A, where f(i) is the i-th iteration of f and > rep-

resents set intersection. An attractor is an attracting set, but an at-
tracting set is not necessarily an attractor. We call a set A an at-
tractor if it is an attracting set and fuA is topologically transitive,
so that A cannot be separated into subsets by f. Therefore, all
points in the trapping region of an attractor are absorbed, or at
least approach the attractor. In other words, any point in this
neighborhood approaches the attractor as time (or the number of
iterations) goes to infinity. Thus an attractor is a topological con-
cept.

Milnor (1985) defined an attractor from another viewpoint, in
which both topological and measure-theoretic concepts play roles.
Here we give this definition. Let r be a measure equivalent to the
Lebesgue measure on X. A compact invariant set a is called a
(minimal) Milnor attractor if the following hold: (1) The basin of
attraction B(a) of a has a positive r-measure, that is, r(B(a)) . 0.
(2) There does not exist a proper closed subset a9 satisfying

r(B(a)/B(a9)) 5 0

According to this definition, a Milnor attractor can possess an
unstable manifold.

Many definitions of attractors have been proposed from various
points of view in which different properties are emphasized. (See
Buescu 1997 for detailed discussion on various attractors, includ-
ing Milnor attractors.)
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3. Attractor ruin

We define an attractor ruin as that which remains after the col-
lapse of a Milnor attractor. If there is no such collapse, the as-
ymptotic behavior of the system is not transitory, but rather the
behavior corresponding to the Milnor attractor. Thus for the
emergence of itinerant behavior another instability is necessary.

4. Chaotic itinerancy

The mathematical study of chaotic itinerancy has only recently be-
gun, and for this reason, its definition has not yet been established.
After the present author, together with Ikeda and Kaneko (Ka-
neko & Tsuda 1996; 2001) found complex but ordered itinerant
behavior in a variety of high-dimensional dynamical systems, and
we recognized such behavior as possessing common characteris-
tics, we considered the analogy between such behavior and that
expected to appear in two interacting subsystems, one of which
possesses many more degrees of freedom than the other. In such
a situation, it is possible that the smaller subsystem would reach
a certain stable state, influenced by the larger subsystem, but
through the feedback from the smaller subsystem to the larger
one, the state of the larger subsystem may change. As a result, the
stability of the smaller subsystem could also change. Such inter-
action seems to allow the appearance of a slow transition among
“quasi-stable states” in the smaller subsystem. Phenomenologi-
cally, such transitions are often observed as being history depen-
dent or as process dependent.

Another important characteristic we commonly found is the ap-
pearance of many zero- or near-zero-Lyapunov exponents.

I introduced in the text one possible mathematical mechanism
of chaotic itinerancy. Through this mechanism, the entire phase
space is decomposed into several subspaces, and in each subspace
the dynamical orbits are attracted to an attractor ruin, as charac-
terized by the negative tangential Lyapunov exponents defined
within each subspace. However, in a direction normal to the sub-
space the dynamical orbits are repelled from such a ruin, as char-
acterized by the positive normal Lyapunov exponents.

5. Cantor sets

A typical Cantor set, called a “ternary set” or a “middle-third set,”
can be constructed by repeating the procedure of dividing a closed
interval equally into three, and removing the middle open set.
Let us consider the construction of such a Cantor set from the unit
closed interval I 5[0,1]. The set removed in the first step of the
procedure is the middle open interval (1/3,2/3), and thus the re-
maining intervals are the closed intervals I11 5[0,1/3] and I125[2/
3,1]. At the n-th step of the procedure, 2n closed intervals Ini (i 5
1,2, . . . ,2n) are obtained. Then, the Cantor set C is defined by C

5 C(n), where C(n) 5 Ini. The Cantor set can also be 

The Cantor set is thus the closure of a set of countably infinite
number of endpoints of subintervals. In other words, the Cantor
set consists of a countably infinite number of uncountable sets on
a bounded interval. If one measures this set with a scale of di-
mension zero, that is, a point, one concludes it has an infinite “vol-
ume.” On the other hand, if one measures it with a scale of di-
mension one, one concludes it has zero “volume.” It is thus
reasonable to think that there is some appropriate scale in terms
of which this set has a finite “volume.” If such a scale actually ex-
ists, it should have “fractal” (noninteger) dimension. The dimen-
sion of this scale is considered the dimension of the set itself. In
fact, the Cantor set does have a noninteger dimension. An effec-

tive method to intuitively understand such an infinite set is to fol-
low the procedure.

In the main text, we did not restrict ourselves to the above de-
scribed ternary Cantor set, and actually addressed the Cantor set in
a more general sense. The Cantor set is generally defined as a
closed, totally disconnected, and perfect set. When a set does not
contain any finite intervals, it is termed totally disconnected. When
every element of a set is an accumulation point, it is termed perfect.

6. The SCND attractor

The SCND (singular-continuous but nowhere-differentiable) at-
tractor can be represented by the graph of a SCND function. The
SCND function, first studied by Rössler et al. (1992), was defined
by Tsuda and Yamaguchi (1998) in terms of singular continuity,
and differentiability on the Cantor set (Tsuda & Yamaguchi 1998),
where definitions are given below. The following definitions are
given for the ternary Cantor set, but they can be extended to the
more general case.

Definition: Singular continuity
For the union of intervals Ini (i 5 1,2, . . . 2n) remaining at each

step n in the process of constructing a Cantor set C, one can define
a continuous function hn(x) in each interval Ini, namely for x [ Ini
for each i. If the functional series {hn(x)} uniformly converges, then
we call its limit h(x), with x [ C, a singular-continuous function.

Definition: Differentiability on the Cantor set

If for some function the above condition for differentiability is
not satisfied at any value of x [ Cl < Cr, we say that it is a nowhere-
differentiable function on the Cantor set.

7. Contracting map under the Hausdorff metric

We dealt with contracting maps in sections 3.6 and 4. The con-
traction and expansion of a map are defined in terms of some met-
ric. We adopted the Hausdorff metric. Now, let D be a set, which
for our purpose is a phase space. Let H(D) be the collection of all
nonempty closed subsets of D. For every A and B [ H(D), the
Hausdorff metric is defined as:

dH(A, B) : 5inf{e . 0uN
e
(A) . B, and N

e
(B) . A},

where N
e

(•) is an e-neighborhood of •.

NOTES
1. If the instability in the normal direction is too strong, the sys-

tem’s overall behavior becomes fully-developed turbulence.
2. These authors used the term “fractal” figures in reference to

represent complex figures including concave contours and/or
nonsmooth curves, but this name is misleading. The figures they
defined are not literally “fractal.” Even though a procedure to pro-
duce fractal figures was used, the figures they used are produced
by using only one or two iteration(s). The fractal, which was de-
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represented by a set of points in I whose position is represented 

by x 5 where pn 5 0 or 2 for each n, hence comes  

the name ternary set.

The set of right endpoints Cr and the set of left endpoints Cl of
subintervals Ini for every i and n are subsets of the Cantor set. That

is, C . Cr < Cl. For each x [ C, the quotient dn (x) ;

is defined, where the series {yn} consisting of endpoints is a mo-
notonically convergent series to x. Then, since Dini’s derivatives
always exist, if we allow 6 `, one can define D*(x) ; dn (x)

  
lim sup

n→∞

  

h y h x
y x
n

n

( ) ( )−
−

and D*(x) ; dn (x), where * denotes a symbol “plus” or
  
lim inf

n→∞
“minus.” For yn , x, Dini’s left derivatives D2(x) and D

2
(x) are

defined for x [ Cr. Similarly, for yn . x, Dini’s right derivatives
D1(x) and D

1
(x) are defined for x [ Cl. If for any convergent se-

ries, D2(x) 5 D
2

(x) for ;x [ Cr and D1(x) 5 D
1

(x) for ;x [ Cl,
then we call h(x), x [ C, a differentiable function on the Cantor
set.
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fined originally by Mandelbrot, must have a noninteger dimen-
sion, so that it contains infinitely many copies with various sizes of
reduction of the whole figure or its parts, whose reduction is real-
ized by affine transformations.

3. This is the dimension of the support of the attractor.
4. George Boole is, as far as we know, the first person to notice

the deep relation between dynamics (recursive maps) and logic,
but he used only fixed points (0 and 1) of the dynamical system,
xn11 5 xn

2, solving the algebraic equation x 5 x2. Here, x may rep-
resent, for instance, “being blue,” and the algebraic equation may
imply equivalence between the two expressions “being blue” and
“being blue and blue.” This equivalence class can be expressed as
the fixed points of the above dynamical system (Boole 1854).
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Chaotic neurons and analog computation
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Abstract: Chaotic dynamics can be related to analog computation. A possi-
bility of electronically implementing the chaos-driven contracting system in
the target article is explored with an analog electronic circuit with inevitable
noise from the viewpoint of analog computation with chaotic neurons.

The target article by Tsuda provides intriguing possible roles of
chaotic dynamics with exotic attractors like Milnor attractors and
SCND attractors in neural networks. Recently, theory of analog
computation has been profoundly developing (Blum et al. 1997;
Siegelmann 1999). Deterministic chaos is, on the other hand,
closely related to real numbers because complexity of real num-
bers specifying an initial condition is read out dynamically with
time by chaotic transformation as typically demonstrated by the
Bernoulli shift map and the tent map. This fact motivated engi-
neers to implement chaotic dynamics with analog circuits rather
than digital circuits (Chua et al. 1993; Shimizu et al. 1991).

Electrical behaviour of nerve membranes can be described by
such “analog” excitable dynamics as the Hodgkin-Huxley equa-
tions (Hodgkin & Huxley 1952). It was shown both electrophysi-
ologically with squid giant axons and numerically with the
Hodgkin-Huxley equations that the excitable neurodynamics eas-
ily generates chaotic response properties (Aihara et al. 1995; Ai-
hara & Matsumoto 1986). In this meaning, biological neurons can
be understood as analog chaotic devices.

Characteristics of the chaotic response in squid giant axons are
qualitatively modeled by the following simple one-dimensional
map of a chaotic neuron (Aihara & Katayama 1995; Aihara et al.
1990) which is used as the chaotic driver of Figure 9a in the tar-
get article (Tsuda & Yamaguchi 1998): where y(t 1 1) is the in-
ternal state of the chaotic neuron at the discrete time t 1 1, k is
the decay parameter, a is a positive parameter, f is the sigmoidal
output function and a is the bias related to the external input and
the threshold.

Since noise seems to play functional roles in or have influence

on generation of the chaotic dynamics with exotic attractors, it
may be an interesting problem in implement chaotic neurody-
namics with an analog electronic circuit with inevitable noise. Fig-
ure 1 demonstrates a return plot of time series generated by an
analog electronic circuit implementing the chaotic neuron map
with analog discrete devices (Ryeu et al. 2000; Shimizu et al.
1991). Furthermore, several kinds of analog IC with the chaotic
neurons have been already designed and fabricated (e.g., Herrera
et al. 1999).

Tsuda also pointed out noise tolerance in the Cantor coding in
a chaos-driven contracting system (Tsuda & Yamaguchi 1998).
Figure 2 demonstrates fractal-like structure observed on the Y-Z
space in an analog electronic circuit of a chaos-driven contracting
system of Figure 3 (Ryeu et al. 2000). The system of Figure 3 is a
simplified version of the system shown in Figure 8a of the target
article where EI is the external input to the chaotic neuron X and
h1 and h2 are discontinuous Heaviside transfer functions from the
chaotic neuron X to the static neurons Y and Z. EI is used to con-
trol chaotic dynamics of the neuron X. The Heaviside functions h1

Figure 1 (Aihara & Ryeu). A return plot of a chaotic neuron
electronically implemented with an analog electronic circuit.

Figure 2 (Aihara & Ryeu). Fractal-like structure observed on
the Y-Z space in an analog electronic circuit of a chaos-driven con-
tracting system of Figure 3.



and h2, which represent wave-shaping effect of axons with all-or-
none thresholds for propagating action potentials (Aihara et al.
1990), make the system simpler by transforming the output of the
chaotically forcing neuron X from analog values to the digital val-
ues of 1 or 0. It may be an important problem to consider whether
introducing the discontinuity to the chaos-driven contracting sys-
tem reinforces stability and robustness of the Cantor coding or
not; it is proved that an asymptotically stable attractor for a con-
tinuous map on a locally compact, locally connected metric space
has finitely many connected components which are cyclically per-
muted (Buescu 1997). The discontinuity also makes it easier to
compare the dynamics of the chaos-driven contracting system
with that of iterated function systems (Barnsley 1988; Stark 1991).

It is theoretically found that chaotic neural networks composed
of the chaotic neurons (Aihara et al. 1990) can produce spatio-
temporal chaotic dynamics with computational ability (Chen & Ai-
hara 1997; 1999; Komuro & Aihara 2000). Although it is a future
problem to examine resolution and noise tolerance of the Cantor
coding in the chaos-driven contracting system implemented by an
analog electronic circuit and explore a possibility to explain meso-
scopic and macroscopic patterns of brain activity (Freeman 2000)
by the chaotic neural networks, the chaotic dynamics with exotic
attractors and the Cantor coding in the target article are quite at-
tractive from the viewpoint of analog computation with the
chaotic neural networks in engineering, too.

The roles played by external input 
and synaptic modulations in the 
dynamics of neuronal systems

Arunava Banerjee
Department of Computer Science, Rutgers, The State University of New
Jersey, Piscataway, NJ 08854. arunava@cs.rutgers.edu
http://www.cs.rutgers.edu/~arunava

Abstract: The framework within which Tsuda proposes his solution for
transitory dynamics between attractor states is flawed from a neurological
perspective. We present a more genuine framework and discuss the roles
that external input and synaptic modulations play in the evolution of the
dynamics of neuronal systems. Chaotic itinerancy, it is argued, is not nec-
essary for transitory dynamics.

The dynamics of Hopfield networks (Hopfield 1982) are a far cry
from that of systems of neurons in the brain. The existence of the
energy function ensures that under the guidance of an asynchro-
nous update rule, such networks relax to fixed point attractors.
This behavior is not in conformance with that observed in systems
of neurons in the brain where limit cycles, let alone stable fixed
points, are not encountered. Tsuda’s efforts at introducing com-

plex dynamics into such model networks are commendable. His
solution, however, is suspect.

Tsuda’s system (Tsuda 1991; 1994), an otherwise standard Hop-
field network without the symmetric coupling constraint, is en-
dowed with an additional class of specialized nodes that, by his
own account, is primarily responsible for the system’s unconven-
tional dynamics. It therefore stands to reason that we take a closer
look at these nodes.

Roughly speaking, the nodes in the noted class stay dynamically
inactive (imparting a constant bias) as the remainder of the system
approaches an attractor. If the remainder of the system settles on
a fixed point, these nodes spring into action and attempt to dis-
lodge it from that state. The dynamics of the overall system is itin-
erant when this attempt meets success. Although this constitutes
an elegant example of an artificial neural network, the claim of bi-
ological relevance seems contrived.

The specialized nodes, in essence, maintain a record of the ac-
tivity of the system from the most recent instance when it attained
a state of equilibrium (however long ago this might have been),
and persistently relay this information to the remainder of the net-
work for as long as it takes for it to attain its next state of equilib-
rium. These are exceptional qualities that cannot be ascribed to
any class of neurons in the brain, axonal tuft cells or otherwise.

These observations also throw doubt on the second category of
systems that Tsuda proposes (systems that manifest SCND at-
tractors). Both the unstable “driving” network that displays
chaotic itinerancy, as well as the multistable “receiving” network
that admits multiple fixed point attractors, are untenable from a
neurological perspective.

The above arguments are not intended to make a case against
chaos in systems of neurons in the brain. On the contrary, our own
investigations into the dynamics of systems of spiking neurons
(Banerjee 2001a; 2001b) indicate that under normal operational
conditions (the state of sparse activity typically observed in the
brain), the behavior of such systems is almost surely chaotic; sta-
ble periodic, stable quasiperiodic, and stable fixed point behavior
almost surely do not occur. Furthermore, analysis of the phase-
space structure of these systems has revealed that attractors in
such systems are potentially anisotropic (in our framework several
Milnor attractors are combined to form one generalized topolog-
ical attractor, hence the anisotropy).

Our views are, however, diametrically opposed when it comes to
the question of the role of chaos in neuronal systems. Ingrained in
this question is the position that chaos is a likely remedy for any of
a number of difficult situations that the brain might face during its
regular course of activity. This outlook is harmful for it presumes
other modes of behavior (such as stable periodic or fixed point be-
havior) in the brain, all of which remain unsubstantiated after sev-
eral decades of intensive experimental research (in this regard, the
revised views in Freeman & Skarda [1990] are noteworthy). An un-
fortunate consequence of this outlook has been the creation of sev-
eral spurious issues with regard to the dynamic aspects of memory.
The physical realization of semantic memory is considered differ-
ent from that of episodic memory based on the erroneous as-
sumption that the former is represented as a fixed point attractor.
Although their physical realizations might indeed be different, if
such is the case the differences will be found elsewhere.

In what follows, we highlight the profound difficulties that lie
before us on the road to a clearer understanding of the dynamics
of neuronal systems.

First, any analysis is inherently incomplete should the impact of
external input on the neuronal system not be considered. Neu-
ronal systems do not operate in isolation. Whereas the study of an
isolated system (or one that receives an initial input following
which the dynamics evolves in isolation) does provide insight into
the general tendencies of its dynamics, the interplay between the
dynamics and the input remains obscure. To illustrate, any corti-
cal column is incessantly bombarded by input from neighboring
cortical columns as well as the thalamus. When the impact of this
input is taken into consideration, the problem takes on an added
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Figure 3 (Aihara & Ryeu). A chaos-driven contracting system
with external input EI to the chaotic neuron X and Heaviside
transfer functions h1 and h2 from the chaotic neuron X to the sta-
tic neurons Y and Z.



dimension of complexity. What was heretofore dynamics in a do-
main of static attractors, is transformed, at the very least, into dy-
namics in a domain of evolving attractors. This follows from the
observation that input into the system can be regarded as a bifur-
cation parameter. In this perpetually changing domain, attractors
drift, new ones originate, some coalesce, and some disappear.
Transition between attractors is effected either by the catastroph-
ic birth of a new attractor around the dynamic state of the system,
or by the smooth, albeit relatively fast, drift of an attractor in such
a manner that the dynamic state of the system is overtaken by its
realm of attraction.

Second, the impact of synaptic modulations on a neuronal sys-
tem complements the impact of the external input, since it, too,
can be regarded as a bifurcation parameter. The deliberations in
the previous paragraph, therefore, apply equally well here. Even
if the rules that govern synaptic modulations prove to be simple,
the corresponding impact on the structures in the phase-space of
the neuronal system will, in all likelihood, be nontrivial.

The resultant scenario is therefore one of profound complexity.

The puzzle of chaotic neurodynamics

Roman Borisyuk
Centre for Neural and Adaptive Systems, University of Plymouth, Plymouth,
PL4 8AA United Kingdom. Borisyuk@soc.plymouth.ac.uk
www.tech.plym.ac.uk/soc/research/neural

Abstract: Experimental evidence and mathematical/computational mod-
els show that in many cases chaotic, nonregular oscillations are adequate
to describe the dynamical behaviour of neural systems. Further work is
needed to understand the meaning of this dynamical regime for modelling
information processing in the brain.

Generally speaking, the models of mathematical/computational
neuroscience could be categorised into the following sub-classes:

1. Stochastic model. A neural activity is described by a sto-
chastic process. A multi-dimensional stochastic process with in-
teractive components is a typical representative of such models
(see, for example, Cottrel & Turova 2000).

2. Deterministic model. This model is based on the axioms of
dynamical system (with discrete or continuos time) and time dy-
namics is completely defined by initial values of the variables and
boundary conditions (see, e.g., Ermentrout 1998).

3. Deterministic model with a stochastic component (influence
of noise). Usually the noise is eliminated by special filtering or av-
eraging procedures to reduce the model to some deterministic
system (see references in the target paper).

The author of the target paper considers the deterministic
models with complex behaviour and he has stressed that the os-
cillatory activity is an important feature of neural activity and ex-
perimental evidence confirms this statement. In general, the de-
terministic (dynamical) system demonstrates the following types
of oscillatory dynamics:

(i) Regular oscillations. In this case, a stable limit cycle is the
attractor. The system shows one-frequency oscillations nearby this
attractor.

(ii) Quasi-periodic oscillations. In this case, a stable torus is the
attractor. The system shows two-, three-, or many-frequency os-
cillations.

(iii) Chaotic (complex, nonregular) oscillations. In this case, a
strange attractor exists in the phase space of the system. A power
spectrum consists of many frequencies with similar power values.

To generate the chaotic neurodynamic, Tsuda considers the in-
fluence of chaotic network on a neural oscillator consisting of ex-
citatory and inhibitory neural populations (see Fig. 8 of the target
article). Another natural way to generate chaotic neurodynamics
is described by Borisyuk et al. (1995). Irregular chaotic oscillations
appear in the system of two coupled neural oscillators with in-

hibitory to excitatory connections. Strange attractors of different
types appear in the phase space under variation of the coupling
strength with different scenarios of transition to the chaotic be-
haviour.

Despite the fact that the importance of complex dynamics for
description of neural activity has been recognised in many papers
(see the list of the target paper references), the following question
is still very actual. “Is the chaotic dynamics an artefact caused by
different noise sources in neural tissue or is this kind of dynamics
a necessary component for information processing?” If we agree
that the chaotic dynamics is not an artefact, then we should put
forward some hypothesis about its role in information processing
and explain the advantages/disadvantages of such an approach.

The author of target article suggests a new concept of chaotic
itinerancy in high-dimensional system that is different from con-
ventional cases with the dynamics described in terms of simple
transitions between low-dimensional attractors. However, it is not
clear why transitions between strange attractors are more useful
for neuroscience than transitions between equilibrium points or
between limit cycles. Also, it is not clear what the advantages are
(if any) of the Milnor attractor and Cantor coding in comparison
to other attractors and coding schemes.

The idea of using transitions between attractors for memorising
sequences of events has been exploited by many authors. For ex-
ample, Baird (1990) has used the bifurcation theory for program-
ming fixed and oscillatory attractors for memorising sequences.
Freeman (1991) has suggested a brilliant example of the chaotic
dynamics for modelling the olfactory system. The model describes
a process of odour recognition as the iterative movement along the
strange attractor assembled with many wings relating to different
odours. The odour recognition means that the system passes a cor-
responding wing more often then others. Kryukov et al. (1990)
suggested that the attractors of neural dynamics are represented
by metastable states that are characterised by stabilisation of av-
erage activity and increasing variance to prepare the system for
transition to another metastable state. Several applications of this
metastability approach to modelling memory, attention, and other
brain functions are considered.

From a mathematical point of view, the process of itinerancy
of neural activity might be described by a dynamical system with
time-dependent coefficients. We can imagine the evolution of
the activities from zero time onwards as the movement of some
“representing point” (current point) of the system in a multi-
dimensional phase space of the system variables. The represent-
ing point travels through the phase space under the influence of
neighbouring attractors. Being in the basin of some particular at-
tractor, the representing point begins waltzing along the attractor.
The attractor is formed by a sub-set of “principal” variables (usu-
ally, the number of principle components is small) which describe
the dynamics of the system during a limited time period. The co-
efficients of the dynamical system depend on time and it is possi-
ble that the stability of the attractor will decrease and the attrac-
tor will disappear. After that, the representing point moves to
another attractor which is governed by another subset of “princi-
pal” variables, and so on.

The global dynamical behaviour of the system is non-stationary.
Nevertheless, the travelling of a representing point nearby of
some attractor might be considered as being more or less station-
ary during some limited period of time. Thus, the information pro-
cessing in the nervous system is represented by a complex spatio-
temporal dynamics in the multi-dimensional space. At each
moment of time, there is a set of principle variables, which form
the attractor and govern the system dynamics during some period
of time, then new attractors appear and one of them takes the ini-
tiative. The crucial point of this consideration is the mechanism
for controlling the system behaviour by the variation of coeffi-
cients. There are several possibilities of such control: stimulus-
dependent control; adaptation of coefficients according to be-
havioural “goals” or learning rules (cost function optimisation);
control from a higher level structure, the central executive, and so
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on. For example, Kazanovich and Borisyuk (1994; 1999) studied
oscillatory networks with a central element and the applications of
this network to modelling attention focus formation. The mecha-
nism for controlling the system dynamics is based on synchroni-
sation of neural activity. It has been shown that the regime of par-
tial synchronisation is very promising for the description of
neurodynamics. In this regime, some oscillators work synchro-
nously with a central element forming a temporally existing at-
tractor. Makarenko and Llinas (1998) have applied the synchroni-
sation principle to study phase synchronisation of chaotic systems
and model the activity of inferior olivary neurons.

Conclusion: The chaotic neurodynamics seems a very intriguing
and promising mathematical technique. Further research should
be done in mathematics and neuroscience to understand the
meaning of chaotic dynamics for modelling of information pro-
cessing in the brain.

Symmetries and itineracy in nonlinear
systems with many degrees of freedom

Michael Breakspeara and Karl Fristonb
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Abstract: Tsuda examines the potential contribution of nonlinear dynam-
ical systems, with many degrees of freedom, to understanding brain func-
tion. We offer suggestions concerning symmetry and transients to
strengthen the physiological motivation and theoretical consistency of this
novel research direction: Symmetry plays a fundamental role, theoretically
and in relation to real brains. We also highlight a distinction between
chaotic “transience” and “itineracy.”

Attractor networks and brain-like neural systems: Symmetry
is the missing link. Symmetry has been central to the conceptual
development of the dynamics of high dimensional nonlinear sys-
tems, but is a notable absentee from Tsuda’s target article. Basin
riddling was first described in the context of dynamical systems
with symmetry (Alexander et al. 1992, not Grebogi et al. 1987).
Symmetrical systems remain the focus of research into basin rid-
dling (e.g., Heagy et al. 1994) and attractor networks (Buono 2000;
Kaneko 1997). Symmetries play the crucial role of enforcing the
dynamical invariance of low-dimensional linear manifolds. When
these manifolds support chaotic sets, Milnor attractors and basin
riddling can arise naturally (unlike the “exceptional” examples that
originally motivated Milnor [1985] such as depicted in Fig. 5).
Basin riddling occurs when these sets also contain a dense set of
periodic orbits which are repelling in the transverse direction.
However, typical orbits (of full measure) are transversely attract-
ing. Hence, the “natural” transverse Lyapunov exponent associ-
ated with the chaotic set is negative (not positive as erroneously
stated in para. 6 of sect. 3.4). It is only low-order periodic orbits
(that have zero measure) that are associated with positive Lya-
punov exponents (and hence “connections” to other attractors).
Approaching high dimensional systems from the perspective of
symmetry thus permits a clear understanding of the mechanisms
of “weak” instability. In addition, it is possible to exploit the differ-
ent degrees of symmetry exhibited by the attractors to construct a
rigorous classification and ordering of the network (e.g., Ashwin
et al. 1992). This permits an improvement on the vague notion of
attractors arbitrarily distributed throughout phase space, as de-
picted in Figure 4.

Symmetries arise naturally in systems of coupled nonlinear os-
cillators (Field et al. 1996). Brain-like neural systems are charac-
terised by networks of coupled nonlinear oscillators – from the
scale of the neuron, up to the scale of the macrocolumn. In these

systems dense local excitatory and inhibitory interconnections
construct individual “nodes,” which are coupled into larger en-
sembles by sparser long-range excitatory connections. Thus, the
organisation of the brain motivates a study of coupled nonlinear
systems and, hence, symmetry. Moreover, the attractors of sym-
metrical systems represent synchronous oscillations among clus-
ters of nodes of different sizes (Kaneko 1997) which strengthens
this motivation. Attractor networks in symmetrical systems have
been used to model normal olfactory perception (Breakspear
2000), visual hallucinations (Bressloff 2001) and animal gaits
(Buono et al. 2000). In contrast, systems with skew-product struc-
ture (as considered by Tsuda) are not well motivated, because
nearly all brain interactions are reciprocal (even the LGN of the
thalamus sends many projections to the retina). Symmetry con-
siderations may strengthen the relevance of Tsuda’s interesting
and original proposals.

Saddles, chaotic transients, and noise: The need for clarity.
Tsuda is correct in pointing out that it may be more relevant to
study transient or itinerant behaviour rather than attractors in dy-
namic systems where inputs and parameters change relentlessly
(Friston 1997). However, it is important to ensure clarity and con-
sistency in the use of the terms “transience” and “itineracy.” Tra-
ditionally, the term “chaotic transience” was applied in the fol-
lowing way (Greborgi et al. 1983): A chaotic attractor (A), subject
to some parameter perturbation, “collides” with its own basin
boundary. Subsequently, orbits on the attractor are mapped into
another basin and subsequently onto another attractor. Put an-
other way, A is no longer an invariant of the dynamic. However, a
large set of initial conditions will still approach the region of A
(now an attractor “ruin”) and transiently mimic the behaviour of
the former attractor, before collapsing onto the alternative attrac-
tor. After this collapse, the transient is not seen again unless the
system’s parameters are tuned back in the opposite direction. If
this is the case, attractors may constantly be “ruined” and then “re-
built.” Such relatively rapid changes in attractors may be effected
by NMDA-receptor mediated changes in the underlying control
parameters (Friston 1997).

On the other hand, the process of chaotic itineracy – which
Tsuda exploits – occurs by a different mechanism. A chaotic at-
tractor, A, is subject to a parameter perturbation that weakens its
transverse stability. At some critical point (the blowout bifurca-
tion), the transverse Lyapunov exponent for the attractor (the nat-
ural measure) becomes positive (Ashwin et al. 1996). A is then a
saddle, not an attractor ruin. Note that A is still an invariant of the
dynamic, but will attract only a zero measure set of initial condi-
tions. However, if the phase space contains many such saddles, it
may be that typical orbits relentlessly shadow these saddles.
Hence the evolution of the system is characterised by irregular
switching between different types of itinerant chaos correspond-
ing to the shadowing of different saddles. This tuning of the dy-
namics into a regime of saddle networks may be achieved by en-
during monoamine-mediated changes in functional synaptic
coupling (Breakspear 2000).

In summary, there are two types of “transient chaos” with po-
tentially distinct neurophysiological mechanisms. “Chaotic tran-
sience” induced by dynamically changing control parameters and
“Chaotic itineracy” due to an invariant but complex manifold (dis-
cussed as engendering type 1 and type 2 complexity in Friston
2000). As brain science calls more upon dynamical systems theory,
it is important to keep such distinctions clear.

Summary. The progression from autonomous, low-dimensional
strange attractors to systems with noise and many degrees of free-
dom represents an important advance in the theory of neural sys-
tems (Wright 2000). The present paper by Tsuda outlines many
potential computational benefits of this progression. Yet, it is crit-
ically important that due respect is paid to both neurophysiology
and nonlinear theory, before another magic “man in the machine”
in cognitive neuroscience research takes shape.
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Multiple and variant time scales 
in dynamic information processing

Hubert R. Dinse
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Abstract: Single cell receptive field dynamics characterized by highly
complicated spatio-temporal activity distributions observable during sen-
sory information processing transforms into much simpler spatio-temporal
activity pattern at a population level, indicating a qualitative transforma-
tional step of time-variant processing from microscopic to mesoscopic lev-
els. As these dynamics are subject to significant modifications during
learning, dynamic information processing is in a permanent state of use-
dependent fluctuations.

The target article by Tsuda offers a challenging reinterpretation of
time-dependent information processing in the brain. While most
of the concept of chaotic itinerancy in high-dimensional dynami-
cal systems is discussed in respect to hippocampal activity related
to memory functions, at present little is known about the applica-
bility and consequences of chaotic dynamics for the interpretation
of low-level sensory information processing. As argued by Tsuda,
the dynamic receptive field (RF) described for early sensory cor-
tical areas may be understood as a neural correlate of dynamic pro-
cesses reflecting ongoing interactions between higher and lower
levels of information processing (cf. Dinse 1994; Dinse et al.
1990).

Our first studies on dynamic RFs, taking up on previous re-
ports of the Nijmegen and the Marburg groups, have been per-
formed in visual cortex and confirmed a substantial time-
dependence of cortical information processing. According to
these studies, subfields of RFs are active for only 20–50 msec dur-
ing stimulus presentation (Dinse 1994; Dinse et al. 1990). We
have extended these analyses to auditory and somatosensory cor-
tices in order to allow comparison between modalities. Dynamic
RFs studied in auditory cortex showed a similar time-dependence,
however, the duration of active states was only 3 to 9 msec indi-
cating the existence of significantly different dynamics (Dinse &
Schreiner 1996). Similar results were obtained for somatosensory
cortex (Dinse 1994; Godde et al. 1993). It has been suggested that
RF dynamics represent particular adaptations for processing of in-
herently time-variant signals specific for each modality. Accord-
ingly, a common feature of cortical signal processing would un-
dergo modality-specific adaptations to match the requirements of
the signal space (Dinse & Schreiner 2001).

The question remains then how these highly intricate dynamics
observed at a single cell level transform into dynamics at a level of
large population of neurons.

From a phenomenological point of view, the idea to analyze en-
tire populations is a rather inescapable consequence of the obser-
vation that a huge number of neurons is activated, even after the
simplest form of stimulation. We recently introduced a new ap-
proach to study population activity in early sensory cortices in the
coordinates of the stimulus space (Dinse et al. 1996; Dinse &
Jancke, in press; Jancke et al. 1999).

“Dynamic population-RFs” (Jancke et al. 1999) were con-
structed from the entire temporal structure of neuron responses
of nearly 200 single cells recorded in area 17 using a Gaussian in-
terpolation procedure (for technical details see Erlhagen et al.
1999; Jancke et al. 1999). Population dynamics were captured us-
ing the time slice technique, frequently used for calculation of sin-
gle cell dynamic RFs (time-slicing and reverse correlation are
identical, given simple stimuli and simple time course of stimula-
tion). However, the temporal evolution of “population RFs” dif-
fered in several aspects as compared to visual single cell Rfs. First,
the time scale of “population RFs” was much shorter: “Population
RFs” were characterized by a gradual build-up and decay of acti-
vation within 40 to 50 msec, while single cell dynamics typically

extend over much longer periods (Dinse et al. 1990; Eckhorn et
al. 1993; Jones & Palmer 1987). Second, activity was quite uniform
across the activity distribution as indicated by a remarkable spa-
tial coherence of activity.

Accordingly, the temporal structure of single cell RF dynamics
that is characterized by highly complicated distributions of activity
in space and time transforms into much simpler spatio-temporal
activity pattern when the dynamics of large numbers of neurons
are taken into account. A comparable compression in overall 
dynamics have also been observed for somatosensory cortical
populations (Kalt et al. 1996). Consequently, the complex spatio-
temporal behavior of single cells is not preserved in the popula-
tion dynamics. This, however, does not imply that the single cell
dynamics are irrelevant. According to one interpretation, the de-
tailed time structure is a consequence of cooperative processes
that in turn generates complex time-dependent interaction ef-
fects. In this view, idiosyncratic spatio-temporal properties ob-
servable at a single cell level are transformed into global, that is,
consistent population behavior of time-variant interactions. In fact,
recent evidence from our laboratory indicates that moving stimuli
are represented as dynamically maintained moving waves of pop-
ulation activity and that these waves emerge as an result of active
processes from internal interaction dynamics (Jancke et al. sub-
mitted).

Populations of this type have been discussed as reflecting an 
intermediate, so-called mesoscopic scale of cortical processing
(Freeman 1999). As each single neuron is part of a population, its
activity is based on the entire network activity, and vice versa, the
network activity is depended on the contributing single neuron. It
has in fact been shown that the activity of a single neuron reflects
the actual state of the entire neural network (Arieli et al. 1996). It
is an interesting question whether a population is in fact able to
create de novo “qualia” neither explicitly present at the single cell
level nor in the input (Lehky & Sejnowski 1999).

While the existence of dynamically organized RFs is now well
acknowledged – quite in contrast to the situation about 15 years
ago – their characteristic dynamics are often regarded as complex,
but rather invariant fingerprints of individual RF properties
(McLean & Palmer 1989). However, there is increasing evidence
that the time structure of single cells and of populations are sub-
ject to significant modifications during learning processes (Dinse
1994; Faggin et al. 1997; Godde et al. 1993; Katz et al. 1999; Ohl
& Scheich 1997). Accordingly, one has to acknowledge that the
temporal structures of cortical response properties are in a per-
manent state of use-dependent fluctuations.

These latter experiments are important in bridging aspects of
cortical processing dynamics with aspects of learning, thereby pro-
viding a fairly direct link between the fast time scale of a few mil-
liseconds reflecting the dynamics of cooperative processes, and
the time scale of learning processes. The results also imply that
“modules” of cortical processing are in fact rather flexible, show-
ing various degrees of adaptations to rapidly changing require-
ments in the environment (Dinse & Merzenich 2001). It remains
to be seen in how far the results described above can be embed-
ded by new frameworks like that suggested by Tsuda to provide a
comprehensive understanding of dynamic brain functions.

ACKNOWLEDGMENTS
The author acknowledges the support of the Institut für Neuroinformatik,
Ruhr-University Bochum. Part of this work was supported by grants from
the Deutsche Forschungsgemeinschaft (Di 334-5-1-3, 334-10-3). I am
grateful for extended and insightful discussion to Dirk Jancke and Chris-
toph Schreiner.

Commentary/Tsuda: Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems

814 BEHAVIORAL AND BRAIN SCIENCES (2001) 24:5
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Abstract: Philosophical, dynamical, neural, network-theoretical, and cog-
nitive ingredients of Tsuda’s brain theory are discussed and anayzed. The
integrative approach emphasized by Tsuda would be a welcome one.

The target article is a step toward a synthetic approaches to cog-
nitive neurosciences (Sporns 2000). Tsuda attempts to integrate
different approaches, such as philosophical, dynamical, neurobio-
logical, network-theoretical and cognitive ones. The present re-
view focuses both on the ingredients of the theory, and also on the
way these ingredients are integrated.

The philosophical ingredient: The hermeneutical framework.
Tsuda adopts hermeneutics, “the art of interpretation” to interpret
the dynamic acticvity patterns of the brain. According to his ap-
proach (Tsuda 1984), the brain is involved in a hermeneutic
process. According to my own argument, the “technical” or “de-
vice approach” to the brain and the philosophical approach can be
reconciled (Érdi 1996). It was concluded that the brain is a phys-
ical structure which is controlled and also controls, learns and
teaches, process and creates information, recognizes and gener-
ates patterns, organizes its environment and is organized by it. It
is an “object” of interpretation, but also it is itself an interpreter.
The brain not only perceives but also creates new reality: it is a
hermeneutic device.

The dynamical ingredient: Chaos everywhere? Both the struc-
tural aspects and the functional significance of the chaotic phe-
nomena in the brain are controversial issues. While Tsuda’s main
concern is to point out the fundamental importance of chaos in
connecting neural and mental phenomena, he does not show too
much interest in the neural mechanisms of chaos generation. The
occurrence of chaotic temporal patterns has been reported at dif-
ferent hierarchical levels of neural organization. Chaotic patterns
can be generated at the single neuron level, due to the nonlinear-
ity of voltage-dependent channel kinetics of the ionic currents, at
the multicellular network level, due to the interactions among
neurons, and at the global level in consequence of spatiotemporal
integration.

Chaotic itinerancy, in any case, is a very nontrivial concept. It
gives a new, dynamic mechanism for the time-dependent transi-
tion among unstable traces of attractors. Whether or not Tsuda’s
whole theory works critically depends on the mathematical relia-
bility of the concept. Now it is being evolved from an interesting
idea to a well-founded one. As I see now, the notion of the Milnor
attractor helps to understand the important concepts of chaotic
itinerancy and “attractor ruin.”

The neural ingredient: Olfactory system and hippocampus.
To demonstrate how his mathematical construction works in spe-
cific neural cases, Tsuda mentioned mostly the olfactory system
and the hippocampus. I think, there are two ways of supporting
the neural plausibility of mathematical constructions. First, it is
possible to cite some relavant experimental literature, second, to
show that a plausible neural model has the required property. In
case of the olfactory system, there are citations to works coming
from Walter Freeman’s lab. There are however, several interest-
ing structure-based dynamic models for explaining the rhythmo-
genesis and memory phenomena both in the olfactory bulb and in
the olfactory cortex (see, e.g., Arbib et al., Ch. 5). Since I do not
clearly see the structural condition of a system leading to chaotic
itinerancy, I really do not know, whether or not chaotic itinerancy
could be deduced based on these models.

The situation is certainly different concerning the hippocampus.
It seems to be convincing that chaos-driven contracting systems
may lead to an attractor with the property “singular-continuous
but nowhere-differentiable”. and believable that hippocampus

may exhibit this property. It should be the subject of a more thor-
ough study whether it is true that the feedback system does not
work against the scenario. How to prove that the massive feedback
connections from the olfactory cortex (and from other central ar-
eas) to the olfactory bulb does not contribute to the generation of
the code and plays role “only” in the context generation?

The network-theoretical ingredient: Chaos driven networks.
Tsuda adopts two types of neural networks, stochastic recurrent
networks, and a chaos-driven stable network. Specifically, the lat-
ter construction is very interesting. Nowadays there is a lot of con-
troversy about the nature of the neural code. Tsuda’s construction
is applied to neural centers, while the ongoing debates related to
the “rate code” versus “temporal code” speak about the coding
strategy applied by a single neuron. It would be interesting to see
whether what could be the conditions of applying Cantor coding.
Is it possible to imagine any situation when Cantor coding may
play a role in coding the information transmitted by a single neu-
ron?

The cognitive ingredient: Memory and perception. There are
two different, only slightly interfering approaches to explain the
memory function of the hippocampus. First, it has been observed
that the anatomical structure of the CA3 region is similar to an ab-
stract network capable of showing associative memory character.
Second, hippocampal rhythms have a fundamental role in mem-
ory trace formation and consolidation. While Tsuda’s dynamic
memory hypothesis benefits from both approaches, again, more
detailed computational studies should be done to relate the mech-
anisms of the generation of different hippocampal rhythms and
the roles of these rhythms in various memory phenomena, such as
memory formation, consolidation, retrieval, and amnesic syn-
dromes.

Integration: An important step. It is not possible to overesti-
mate the need for integrative approaches in neurosciences.
Tsuda’s theory integrates new concepts of dynamic system theory
with data on neural activity patterns. The theory is abstract, as a
beautiful theory really should be. The story should be continued,
however, both at the level of abstractness as it stands now at the
target article, and also on the level of conventional neural model-
ing.

Cantor coding and chaotic itinerancy:
Relevance for episodic memory, 
amnesia, and the hippocampus?

Jonathan K. Foster
Department of Psychology, University of Western Australia, Nedlands, Perth,
WA 6907, Australia. jonathan@psy.uwa.edu.au
www.psy.uwa.edu.au/user/jonathan/

Abstract: This commentary provides a critique of Tsuda’s target article,
focusing on the hippocampus and episodic long-term memory. More
specifically, the relevance of Cantor coding and chaotic itinerancy for long-
term memory functioning is considered, given what we know about the in-
volvement of the hippocampus in the mediation of long-term episodic
memory (based on empirical neuroimaging studies and investigations of
brain-damaged amnesic patients).

In this ambitious article, Tsuda applies the mathematical frame-
work of chaotic dynamical systems to the interpretation of high-
dimensional complex dynamics of the brain. The focus of this pa-
per is the discovery of chaotic itinerancy in high-dimensional
systems with and without a noise term, which is then applied to
brain functions, concentrating on high-dimensional transitory dy-
namics along “exotic” attractors. (Tsuda contrasts this interpreta-
tion with the conventional view of dynamic neural activity, which
tends to be phrased in terms of simple behaviour on low dimen-
sional attractors.) Tsuda seeks to apply his framework to biologi-
cal information processing, perception, and memory, proposing a
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coding scheme of information in chaos-driven contracting systems
which he refers to as Cantor coding. It is argued by Tsuda that
these systems are found within the brain in the hippocampal sys-
tem and also in the olfactory system, among other possible candi-
date brain regions. Subsequently, a hypothesis regarding the in-
volvement of chaos-driven contracting systems in the mediation
of episodic memory is proposed.

Tsuda’s operating framework specifies that the brain is orga-
nized not only in a hierarchical fashion but also in a “heterarchi-
cal” manner, according to which a single neuron or neuron as-
sembly is represented by a multiple code (i.e., the information
representation is realized both by the state of the neurons and by
the dynamic relations among these states). Tsuda does not state in
detail how he views these multiple codes operating within and
across snapshots of time. (He does state in the piece that “the time
scale 20–50 msec is approximately a ‘unit’ of psychological time,”
although this assertion is unreferenced.)

Tsuda’s view seems to bear some similarity to the consensus
viewpoint emerging from cognitive activation studies of brain
functioning, whereby – it is argued – regional brain activity should
be evaluated within the neural context in which it occurs, rather
than in terms of isolated neural activations (McIntosh 1999). More
specifically, the general view emerging from these neuroimaging
studies is that cognitive functions are the emergent properties of
large-scale neural network interactions (so that a common brain
region may play a different role across many functions, with its
specific cognitive role governed by its interactions with anatomi-
cally related regions). One is also reminded of the conceptual
framework articulated by E. R. John, who has – over the past sev-
eral decades – repeatedly emphasized the interactivity of coher-
ent ensembles of neural cell assemblies in mediating cognitive
functioning (see John et al. 1997, for a recent review).

The conceptualisation of memory that Tsuda proposes – and, in
particular, the interplay between episodic and semantic memory
– is not clear. It would be useful if Tsuda provided a clear defini-
tion of how he is using terms such as episodic memory, semantic
memory, and working memory, and to which specific psychologi-
cal construct these terms refer. Tsuda appears to adopt a variant
of the Bartlettian framework, noting that memory is the product
of a complex interplay between what is stored and what is cur-
rently being perceived, and later stating that “memory and infor-
mation processing cannot be distinguished.” He additionally
states that he is adopting the “hermeneutic” (i.e., interpretive)
framework of dynamic neural activity – which presumably extends
to the neural basis of episodic long-term memory – although this
hermeneutic framework is not explored in detail.

More generally, the paper is pitched primarily from a mathe-
matical perspective, and is somewhat lacking in appropriate psy-
chological and neurological detail and appropriate references to
these literatures. The paper may therefore have benefitted con-
siderably from co-authorship with an individual with appropriate
expertise in the cognitive and brain sciences. Where neurological
information is presented, it is often highly simplified; for exam-
ple, in the context of regions where “higher” and “lower” level in-
formation meet, it is proposed (unreferenced) that “the hip-
pocampus-parahippocampus system is one possible such area in
the sense that here the neural activity of the frontal cortex meets
the sensory inputs.” This statement in one sense captures the ex-
citement of recent findings in the neuroimaging literature link-
ing prefrontal cortical activations to the established role of the
medial temporal brain regions in subserving episodic long-term
memory. However, given the lack of cognitive detail adduced by
Tsuda, one is left wondering to what extent the mathematical con-
cepts employed are indeed neurologically implementable. On a
related note, there are a number of logical leaps and non-justified
extrapolations requiring considerable tolerance from the reader.
For example, in section 2, paragraph 4, we jump from a consid-
eration of the findings of Freeman et al. in their explorations of
the olfactory bulb to the statement that “this suggests that the

brain is hermeneutic (interpretative) in nature and exhibits
chaotic behaviour” (my emphasis).

With respect to the computational basis of episodic long-term
memory, Tsuda proposes an interplay between (1) a modified re-
current net and (2) the unidirectional coupling of an unstable net-
work with a stable network. He further proposes a 50% increase
in the memory capacity in the case of a network manifesting
chaotic itinerancy compared with the case without chaotic itiner-
ancy. Taken together, these assertions are most interesting in the
context of our own findings (Foster et al. 1997) indicating that the
hippocampus modelled as a straightforward recurrent net with
some biologically plausible characteristics (Treves & Roll 1992)
does not manifest a high enough level of memory retrieval per-
formance to serve as an adequate model of long-term memory.
Also appealing is Tsuda’s proposal that chaotic itinerancy permits
simultaneous learning and retrieval, given the tendency in the hip-
pocampal memory literature to propose models which distinguish
between a “learning phase” and a “retrieval phase,” without ade-
quately specifying the necessary mechanisms for such a state shift.
However, I was not clear from Tsuda’s writing on the precise in-
terplay proposed between the hippocampus, the entorhinal cor-
tex, and the neocortex in the consolidation of information into
long-term memory and the time course that he wishes to specify
for these processes. More explicit comparison with the proposed
characteristics of the influential neurally-constrained long-term
memory model of McClelland et al. (1995) would also have been
useful for the reader interested in the neural basis of episodic
long-term memory, specifically the proposed computational
mechanisms underlying hippocampal/neocortical interactions.

Noise-driven attractor landscapes for
perception by mesoscopic brain dynamics

Walter J. Freeman
Division of Neurobiology, Department of Molecular and Cell Biology,
University of California, Berkeley CA 94720-3200
wfreeman@socrates.berkeley.edu http://sulcus.berkeley.edu

Abstract: Tsuda offers advanced concepts to model brain functions, includ-
ing “chaotic itinerancy,” “attractor ruins,” “singular-continuous nowhere-
differentiable attractors,” “Cantor coding,” “multi-Milnor attractor sys-
tems,” and “dynamically generated noise.” References to physiological
descriptions of attractor landscapes governing activity over cortical fields
maintained by millions of action potentials may facilitate their application
in future experimental designs and data analyses.

Based on work with the Japanese “gang of five” (Kazuyuki Aihara,
Hiroshi Fujii, Shigetoshi Nara, Minoru Tsukada, and Ichiro Tsuda)
Tsuda has advanced substantially beyond elementary basin-
attractor theory, which has served well because of its intelligibility
and communicability, but which is too simple and too rigid to
match the richness of new data and the qualities of perception,
particularly the nuances of schemata and meanings that inhere in
episodic memories. He describes dynamic brain states as trajec-
tories across state space, constituting chaotic itinerancy in analogy
to the cyclical visits of itinerant workers to familiar places with sea-
sons and years. Each new site of visitation is governed by an at-
tractor that dissolves into “ruins” even as soon as it is actualized,
persisting in its pervasive influence but allowing the brain state to
avoid capture and incarceration in some pathological deep well.
Tsuda does not use the term “attractor landscape,” because he
thinks that it denotes rigidity and unchangeability. I view his sys-
tem as too rigid because, like the loop formed by a chain of water
falls in an etching by Escher, it does not admit changes in the
structure or sequence of the choice points resembling saddle
nodes. In my view, the flexibility of the olfactory system is given
by the fact that each time the animal inhales, the attractor land-

Commentary/Tsuda: Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems

816 BEHAVIORAL AND BRAIN SCIENCES (2001) 24:5



scape is recreated to enable a classification, and with each exhala-
tion the entire landscape collapses, so that the system is freed to
make another test. Conceptions are needed of adaptive land-
scapes subject to modifications by tilting, raising, and lowering to
enhance or expunge attractors, enlarging or contracting basins in
the manner of tessellated Voronoi diagrams (Okabe et al. 1992) ex-
ecuted by limbic controls (Kay & Freeman 1998) that actualize the
processes of intention and attention in the regulation of sensory
inflow and motor outflow.

Tsuda conceives nonlinear neural networks as operating far
from equilibrium through the collective interactions of neurons in
uncountable numbers, hence being capable of reaching and sus-
taining highly organized stable macroscopic states by sequential
phase transitions. He views cognitive functions not simply as
macroscopic but as maintained through “the interplay between
macroscopic and microscopic behavior.” I identify the micro-
scopic with activity of neurons, and the macroscopic with patterns
of enhanced metabolic activity in gyri and lobes, which are being
observed noninvasively with imaging techniques such as fMRI
and PET scans. In order to bridge the “explanatory gap” between
these levels I have borrowed from physicists the term of inter-
vening “mesoscopic” domains (Freeman 2000a), in order to give
proper place to the fully textured patterns of amplitude and phase
modulation of chaotic waves in the EEG gamma range. These spa-
tially coherent “AM patterns” and “PM patterns” manifest the lo-
cal mean fields of cooperative neural populations that are much
larger than cortical columns and barrels but smaller than gyri in
human cortex, perhaps comparable in size to Brodmann’s areas as
they are illustrated in classical texts. The cortical and bulbar EEGs
reveal the formation by first order phase transitions (compatible
with SCND) of transient and sequential episodes of gamma oscil-
lations (Freeman 1999b). In sensory areas the AM patterns are
triggered by sensory stimuli that destabilize cortical populations,
select an appropriate basin, and enable the dynamic construction,
transmission, and rapid dissolution of neural activity patterns that
actualize the meanings of stimuli by incorporating a lifetime of ex-
perience and an expectancy of what the stimuli mean for direct-
ing future actions by the individual subject (Freeman & Kozma
2000). The attractors governing these mesoscopic patterns medi-
ate between the neurons and the on-going construction of macro-
scopic patterns in whole brain activity. Each pattern is broadcast
through the brain by divergent-convergent axon projections. Si-
multaneous reception of multiple broadcasts by tuned neural cir-
cuits leads to integration of multisensory percepts (Gestalts).

Tsuda uses the oxymoron “singular-continuous nowhere-
differentiable” (SCND, Tsuda & Yamaguchi 1998) to denote at-
tractors at the mesoscopic level. I take this to refer to the “point-
process” pulse activities of neurons that simultaneously partici-
pate in generating cooperative d.c. biases and gamma wave
patterns that control the neurons in “circular causality” (Haken
1983), so the mesoscopic attractors are continuous but have de-
rivatives neither in time nor space. His “Cantor set” is an apt de-
scriptor for sparse, seemingly random, continually renewing dis-
tributions of action potentials in steady state cortical activity.
“Chaos-driven contraction systems” well describes the “Cantor
coding” for the prepyriform cortex, the performance of which dur-
ing partial complex seizures (Freeman 1986) confirms his predic-
tion that “the SCND attractor will be observed in the potential of
inhibitory neurons which are driven by chaotic neurons” (Tsuda
1996). It must be noted, however, that the bulb-prepyriform link
is not “unidirectional” but reciprocal, and though the prepyriform
is “driven” by the bulb, the bulb (M and G) and prepyriform (PPC)
combine with the anterior olfactory nucleus (AON in his Fig. 10)
to create the chaotic activity of the olfactory system by their meso-
scopic interactions. That activity is modulated by the entorhinal
cortex (EC), but it persists after isolation of the olfactory system
from all central connections (Freeman 2000a). The bulbar EEG
reflects activity that is truly mesoscopic and self-organized, and it
is modulated but not driven by “internal inputs coming from ol-

factory cortex, hippocampus and amygdala.” Most important, the
EEG manifests chaotic attractors of populations and is not due to
phase-locking of microscopic chaos of neurons, on which Tsuda
and I agree. The reason this is important is that sensory stimuli are
converted by receptors to patterns expressed by point processes
(trains of action potentials – “units”) on a surface (pyramidal cells
in an area of cortex), and each pattern is the relation of each point
to every other point. This is a mesoscopic property, and classifica-
tion requires selection of a mesoscopic basin. We agree also that
in a contracting system such as the prepyriform cortex, chaotic in-
put serves as a driver.

Tsuda’s mathematical description of “dynamically generated
noise” fits the way in which each neuron disseminates and ran-
domizes its action potentials into the neuropil to its neighbors
(Freeman 2000c) and receives from them by a distributed recur-
rent axons (Freeman 1996), with a feedback gain that exceeds
unity, thus giving rise to sustained background activity at the
mesoscopic level called “stochastic chaos” (Freeman 2000b) to
distinguish it from low-dimensional “deterministic chaos.” This
excitatory bias is an order parameter for the induction of state
transitions in cortical itinerancy. He comments on the utility of
two kinds of noise for associative memory: “dendritic” noise that
is “equivalent to the case of simulated annealing,” and “synaptic”
noise that is essential in chaotic itinerancy. His distinction be-
tween “dendritic” and “synaptic” is not useful in physiology, but
his identification of multiple roles for noise is crucial. Noise serves
to select and stabilize a local domain known as a Milnor attractor
(Kaneko 1998) by smoothing the SCND state space resembling
mammalian fur to a pockets with fractal boundaries. Noise pro-
motes destabilizing by forcing jumps across separatrices that ap-
pear as first order state transitions (Barrie et al. 1996; Freeman &
Barrie 2000). Additionally, noise enables Hebbian learning of
new attractors rather than reinforcing those existing (Freeman
1991).

A complementary approach should be explored in brain dy-
namics by treating the AON as a “chaotic controller” (DiBernardo
1996; Pecora et al. 1997; 1998; Pecora & Carroll 1999). Measure-
ment of radially symmetric phase gradients of EEG gamma bursts
indicate that the bulb is self-organizing, whereas the prepyriform
cortex lacks these and is not (Freeman 2000a; Freeman & Barrie
2000). The chaotic activity of the olfactory system is produced by
the interactions of these modules, not by any of them alone, nor
by any driving from outside (Kozma & Freeman 1999). Compara-
ble properties should be sought in the dynamics of the entorhinal-
dentate-hippocampal relations, and likewise between triads of
neocortices.

Control of chaos and memory dynamics

Richard A. Heath
Divison of Psychology, University of Sunderland, Sunderland SRG ODD
United Kingdom. richard.heath@sunderland.ac.uk

Abstract: Neurally inspired models of human cognition exude explana-
tory power without necessarily making predictions that can be verified be-
haviorally. This is the case for Tsuda’s dynamic model. It is suggested that
a simpler principle based on the nonlinear dynamic interaction between
modules based on control of chaos, can achieve a similar theoretical goal
in a cognitively verifiable way.

A sensible strategy for constraining the large number of compet-
ing neurally-inspired models for human cognition involves ensur-
ing that such models are both dynamic and based on known brain
mechanisms. Tsuda accomplishes this difficult task in the context
of episodic memory by considering the neurophysiological and
neuroanatomical properties of the prefrontal cortex and the hip-
pocampus. He then extends the fundamental principles of non-
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linear dynamics to devise a modular model that purports to solve
such problems as the storage and recall of episodic memories. Of
particular significance is the proposal that such memories are not
simply stored like letters in a mailbox or images distributed
throughout a hologram. Instead, they consist of a dynamic repre-
sentation of the interactions between modules at different levels
of the nervous system.

In terms of contemporary memory theory, this is a revolution-
ary concept. However it is not without precedent. For example,
Heath (2000a) presents a modular neural network model involv-
ing at least two modules, each of which undergoes spontaneous
dynamics at any point in time. Any interactions generated by one
module influencing the other are reflected in changes in the qual-
itative nature of the dynamics occurring at each module. For ex-
ample, spontaneous chaotic dynamics (see Freeman 2000 for a
contemporary account) can be replaced by limit cycles under the
influence of strong external stimulation. In Figure 8.7 in Heath
(2000a), the input from one module generates quasi-periodic dy-
namics in the other module. A remnant of this dynamics remains
when the external stimulus is terminated, indicating that such
models can store episodic memories as dynamics, rather than as
static entities. Such systems are quite general and can serve as in-
teresting models for psychological processes such as perceptual
segmentation (van Leeuwen et al. 1997).

The modeling strategy adopted by Tsuda is essentially a dy-
namic reconstruction of a signal in the presence of noise, where
the latter can be both beneficial and destructive to adaptive in-
formation processing. A large number of processing units ensures
that neural processing is high dimensional, yet fundamentally 
deterministic. Instead of focusing on control of chaos as a gen-
eral information processing principle, Tsuda employs an itinerant
attractor to represent the internalization of transient external
events.

The use of an itinerant attractor is an interesting idea. One of
the difficulties of applying attractor models from the behavioral
point of view is that seldom do such models provide a mechanism
for completing one cognitive transaction and readying the system
to deal with another. By allowing the neural network to escape
from an attractor ruin via an unstable manifold such a process is
possible. Alternatively, as Heath (2000b) has shown, control of
chaos techniques can be used to achieve the same theoretical goal
in a chaotic neural model for stimulus discrimination. Prior to
stimulus presentation, the network dynamics consist of nonlinear
determinism (possibly chaotic if the attention gain is high) plus su-
perimposed noise. When the stimulus is presented, the system
sheds degrees of freedom under control of chaos, information pro-
cessing occurs, and a psychophysical decision is made. However,
once the stimulus terminates, the system reverts to its high di-
mensional deterministic, noisy dynamics, in readiness for the next
stimulus.

From the behavioral perspective, the major difficulty with
Tsuda’s model is how the basic principles can be incorporated into
a cognitive model that can be evaluated experimentally. The fun-
damental principles expressed in section 3.5 seem reasonable, es-
pecially from the perspective of a modular chaotic neural network.
However, the assumption that memory can operate indepen-
dently of context is puzzling, especially since contextual cues play
an important explanatory role in several contemporary memory
models (Dennis & Humphreys 1998). This relegation of context
to the theoretical background is subsequently negated in section
3.6 (as well as in sect. 4.3) when top-down processes provide a dy-
namic contextual code.

The neurally-inspired model for the formation and use of
episodic memories, based on hippocampal information process-
ing, is interesting. However, the mathematical predictions of the
model are not clearly stated, as surely would be possible for the
storage and retrieval of stimulus sequences. This makes it difficult
to compare and contrast the model with competing models for
episodic memory. The practical significance of “distances” be-
tween episodic memories, presumably facilitated by the Cantor

set fractal representation of clustered information storage, is not
evident. At no stage does the fractal representation become a crit-
ical explanatory concept, simply because its predictions are never
contrasted with those of models that do not have such a property.

The challenge for future cognitive research is to translate the
principles presented in this paper into predictions that can be
evaluated experimentally. The problem of relating neural activity
to mental states, a fundamental challenge in neurocognitive mod-
elling, is recognised but not achieved. Nevertheless, a brief ac-
count of such an enterprise is presented in the Appendix and per-
haps a more detailed account of that project (Hatakeyama &
Tsuda 2000) would have been helpful. Otherwise, these ideas will
remain floating in a turbulent sea of interesting dynamical princi-
ples desperately seeking an attractor within empirically verifiable
cognitive theory.

Chaotic itinerancy needs embodied cognition
to explain memory dynamics

Takashi Ikegamia and Jun Tanib
aInstitute of Physics, General Systems Sciences, The Graduate School of
Arts and Sciences, University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo
153, Japan; bSony Computer Science Laboratory Inc., Takanawa Muse
Building, 3-14-13 Higashi-gotanda, Shinagawa-ku, Tokyo, 141 Japan and
Behavior and Dynamic Cognition Laboratory, The Brain Science Institute,
Riken. ikeg@sacral.c.u-tokyo.ac.jp http://sacral.c.u-tokyo.ac.jp/~ikeg
tani@csl.sony.co.jp www.csl.sony.co.jp/person/tani.html

Abstract: Memory dynamics need both stable and unstable properties si-
multaneously. Hence memory dynamics cannot be simulated by chaotic
itinerant dynamics alone, with no real world correspondence. Memory dy-
namics are constrained by both semantics and causalities in the embodied
cognition.

We are sympathetic with Tsuda’s attempt to invoke dynamical sys-
tems ideas to understand cognitive functions, in particular mem-
ory dynamics. Because a variety of new phenomena reported in
brain systems require a very powerful description system other
than natural language, we think it is essentially instructive to con-
sult other powerful systems studies, that is, chaos and dynamical
systems. Novel phenomena observed in chaos can give us new
ways of understanding complex phenomena, so that we can use
them for understanding brain systems. Since we consider the ad-
vantage of dynamical systems to be the dynamical interpretation
of phenomena, brain systems can be reinterpreted as dynamical
processes.

For the past 10 years, a variety of new words and ideas have been
accumulated in dynamical systems studies. Chaotic itinerancy
(CI), noise induced order (NIO), riddled basins and singular-con-
tinous but nowhere-differentiable (SCND) attractors have been
concerned in particular with the interplay between dynamical sys-
tems and noise phenomena as Tsuda introduced in the first part
of the paper. Using these terminologies, we may be able to discuss
brain functions without having explicit distinction between mem-
ory and information processing. Simultaneous read-out/write-in
processes in brains can also be understood as emergent property
of some novel dynamic property (e.g., Sato & Ikegami 2000).

On the other hand, the second part of the paper is devoted to
the application of CI and SCND attractor to episodic memory,
where we find the article needs substantial clarification and im-
provements. In particular, Tsuda’s idea of episodic memory sounds
very static against his overall “dynamic” attitudes. From the series
of works using recurrent neural networks (RNN), we have the fol-
lowing notions with respect to memory and perception structures,
which are mostly neglected in Tsuda’s argument.

When we use RNN to study various cognitive tasks ranging
from robot navigations (Tani 1998) to game playing situations
(Taiji & Ikegami 1999), our basic attitude towards modeling cog-
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nition is that it has to deal with two opposite features simultane-
ously; procedural and nonprocedural memory structures. RNN is
often called a dynamical recognizer (Pollack 1991) which recog-
nizes any information of its experience in a time sequence. As a
result, one’s actions against the external world generate a new set
of rules and dynamics as a sequence of transitions among “clus-
ters” in a phase space. This sequence constitutes a so-called con-
text map in a network. Sometimes those rules become explicit and
we see a good correspondence between a finite automaton and
cluster patterns in the phase space of networks (Elman 1990; Pol-
lack 1991). Here we say that a memory structure is obtained as a
procedural-like rule.

Sometimes those memories cannot be explicit and become
highly dependent on the on-going interaction between subject
and environment (including other subjects). In this case, cluster
patterns in the phase space become cloud-like patterns, which of-
ten correspond to chaotic attractors in an iterated functional sys-
tem (IFS). That is, a tiny fluctuation in the states of RNN will com-
pletely alter the whole sequential structure of memory. A memory
structure is not procedural-like in this case. Thus we cannot make
a simple causal relationship among clusters. What we call mem-
ory dynamics underlying cognitive function is defined in this itin-
erant phenomena among procedural- and nonprocedural-like
memory structures.

Moreover, what is missing in Tsuda’s argument is the semantics
and causality that should emerge spontaneously from the memory
dynamics. Tsuda only relates each cluster to (semantic) memories
and discusses the chaotic transitions among them, but fails to re-
fer to its total causalities among them. Even if we take episodic
memory as a combination of given semantic memories, there is no
discussion on the emergent structure of the episodic memory 
itself. We cannot freely reconstruct the memories since we 
inevitably experience episode sequences under a kind of “conti-
nuity axiom” to preserve natural causality. A continuity axiom is 
requested between successive (semantic) memories (Igari & Ike-
gami 2000). As well as in the second law of thermodynamics, some
paths from one memory to the other are prohibited not by ther-
modynamics but by cognitive constraints. Without mentioning
such cognitive constraints, chaotic itinerary of memory dynamics
(with Cantor coding) becomes just a metaphorical statement. The
constraint is only explained by the learnability of RNN against the
richness of perceptual experience.

Finally we argue that memory dynamics underlying cognition
has both stable and unstable nature in some more difficult level.
Subjectively a memory structure is stable in the sense that we can
draw on our memory structure. We believe that it is stable since
memory structures are constrained by both semantics and causal-
ities in the embodied cognition. But objectively, neural activities
underlying memory dynamics look very chaotic as Tsuda continu-
ously argued in the article. This apparent paradox should be prop-
erly answered. In order to resolve this question, we think that
brain systems should have its outside. To study how a brain system
is situated in a given environment (including other brain systems)
is a necessary condition to understand how it generates memory
dynamics. We argue that memory dynamics internalize the exter-
nality of its environment by making a distinction between self and
nonself actions.

Chaotic itinerancy: Insufficient 
perceptual evidence

Leslie M. Kay
Institute for Mind and Biology, University of Chicago, Chicago, IL 60637.
lkay@spc.dura.uchicago.edu
http://socialpsy.uchicago.edu/lkay/index.html

Abstract: Chaotic itinerancy is useful for illustrating transitions in attrac-
tor dynamics seen in the olfactory system. Cantor coding is a good model

for information processing, but so far it lacks perceptual proof. The theo-
ries presented provide a large step toward bridging the use of chaos as an
interpretive tool and hard examination of chaotic neural activity during
perception.

Tsuda has presented the idea that itinerant chaos can adequately
represent the dynamic brain as a hermeneutic device. The argu-
ment is attractive and persuasive. Chaotic itinerancy describes the
character of olfactory system dynamics seen during odor discrim-
ination (Kay et al. 1996; Kay & Freeman 1998). In those studies
we saw an orderly succession of attracted states in the olfactory-
limbic system axis. We concluded there that the entire system is
involved in both memory storage and dynamic recall and that cen-
trifugal projections from the limbic system to the olfactory bulb
(OB) are important to the evolution of the attracted state through
which the OB transits. With these data and others, a chaotic sys-
tem was hypothesized, but physiological data do not lend them-
selves easily to proof of mathematical chaos. State transitions are
abrupt, and a given state may be as brief as 100 msec. Tsuda’s the-
ory comes close to providing a framework in which to evaluate
such claims, and he reassures us that it is not necessary to prove
chaos. Thus, chaotic itinerancy can be a useful model for inter-
preting a succession of temporary attracted states, where a global
itinerant attractor may contain the temporal order of transitions
and represent the perceptual process of learning, memory, and re-
call. I would also urge Tsuda to include action in the perceptual
process. The somato-motor system has been shown to exhibit dy-
namic properties (Laubach et al. 2000; and others). Following
Tsuda’s representation of interfacial dynamics, the output mecha-
nism cannot be removed from the process, nor can the motor be-
havior involved in information seeking (sniffing and whisking in
rats). An animal’s response is an integral part of the perception and
including the method of action via motor cortex and other brain
areas in the global itinerant attractor system removes the neces-
sity for a separate “decoding” mechanism to produce the desired
output.

Tsuda makes a good argument in favor of dynamical over hier-
archical processing. Evidence for this includes dynamic neural cell
assemblies, dynamic receptive fields, and dynamically changing
system structure. In all of these cases, the appearances of the sys-
tem support the dynamical hypothesis. However, we should have
a compelling reason to choose dynamical over hierarchical pro-
cessing and chaos over a simpler dynamical system. The discus-
sion of Cantor coding, especially in the hippocampus, is an at-
tempt to address both concerns. However, I am left with some
questions.

(1) Is it necessary to “decode” what is stored in the cortex to ex-
tract the temporal information, and, if so, how can this be accom-
plished? One hopes that the system can simply recreate the dy-
namic set of states, which is the memory, the learning, the recall,
and the action. In this case there is no need for decoding or bind-
ing.

(2) Can evidence from the isolated hippocampus support a
perceptual theory? We have seen that when a brain wakes up and
performs a task, what we believed to be simple and static rules,
such as receptive fields, are drastically changed (Nicolelis &
Chapin 1994). As described in the text, the hippocampus exhibits
chaos and in its isolated state produces a stable system driven by
chaotic input. Chaos has also been shown to provide a good frame-
work for controlling simulated seizures in the hippocampus
(Schiff et al. 1994). When we examine the hippocampus in a per-
ceiving animal, does it follow the same rules? I take the olfactory
system as an example. Tsuda describes the OB-prepyriform cor-
tex (PPC) system as another instance of a stable system driven by
chaotic input. He argues that feedback connections from the PPC
can be seen as contextual information, which can therefore be ig-
nored for the sake of argument. However, it is these connections
from the PPC and elsewhere that make possible the putative chaos
in the OB (Freeman 1987). Sensory input to an anesthetized or
isolated OB may produce non-chaotic activity and relatively sim-
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ple odor coding (Gray & Skinner 1988; Mori et al. 1999). On the
other hand, odor perception produces sensory activity in OB mi-
tral cells that is strongly modulated by context, to the extent that
“odor coding” is difficult to extract (Kay & Laurent 1999). Thus,
chaotic and contextual activity seen in the OB may be part of the
perceptual reenactment of the itinerant attractor set distributed
over at least four olfactory and limbic system structures and sev-
eral seconds (Kay et al. 1996), not driving by chaotic sensory in-
put. Does the theory hold up under this condition?

I am left with the impression that there remains a large gap be-
tween using itinerant chaos as a descriptor of system characteris-
tics during perception and using it to interpret hard physiological
data from a behaving animal. The closest the data come to proof
of chaos is in the isolated preparation. We still face the issue of sta-
tistical nonstationarity in awake animals, but Tsuda’s approach
may be our best bet for bridging this gap.

The noise of chaos

Zbigniew J. Kowalik
University of Duesseldorf, D-40225 Duesseldorf, Germany.
kowalik@neurologie.uni-duesseldorf.de

Abstract: When theoreticians talk about noise, they frequently forget
about the idealization coupled with this term. Another implicit and rarely
mentioned assumption is that the tools of mathematics used are idealiza-
tions, too. Though some of Tsuda’s ideas are similar to mine (e.g., we both
believe that nonlinearity is one of the main reasons why the brain works
the way it does; Kowalik et al. 1996), some critical remarks are in order.

The brain is an open system. The brain, similar to all other
“real” systems, is an open system. That means, the environment’s
influence on the system is more or less uncontrolled. We can be
lucky when our experimental setup provides a well defined, clearly
structured object of investigation. However, the human brain in
vivo never works like that. For instance, in order to observe
“clean” evoked responses we need to repeat a stimulation many
times and (linearly) average the signals, with the hope that all
these uncontrolled influences will vanish due to their random
character. That is only a supposition. Where is the border between
noise and a high-dimensional dynamics?

It is indisputable that a point or a line are idealized mathemat-
ical objects. It is very rare that the same can be said about noise.
Noise as an infinite-dimensional signal is an ideal mathematical
object. The same can be said about the simple (or more complex)
oscillation. Nature is a complex, extremely high-dimensional,
nonlinear system and there is no constituting element therein be-
ing an ideal object. When looking for dimensionality of subsys-
tems we will find this as 2, . . . 5, . . . , or more dimensions. We
will start to believe it is a true value when this number is too large.
After that, we will call it “noisy.” Thus, there is no strict limit be-
tween noisy and deterministic behavior. The same should be
said about stochasticity – every time we are not able to write
down all the required equations of the system’s motion, we will
assume its “stochastic character.” Tsuda goes still further. He
speaks about a deterministic system constituting 1015 elements.
It requires a definition at least. We met a similar problem while
looking for a low-dimensional character in the magnetoenceph-
alogram (Kowalik & Witte 2000). We observed a spatial distribu-
tion of local Lyapunov exponents (lLE) in all 122 measured chan-
nels, and found that there exist distinct maxima of the lLE. It was
a clear proof that low-dimensional chaos occurs transitorily at
some brain areas. It does not mean that the rest (of not enough
frequently repeated dynamics) had no deterministic character.
One should maybe observe further and further, up to dimensional
saturation?

Coexisting attractors with a weak barrier. In a simple system
of a bouncing ball (Kowalik et al. 1988) we were able to find that

coexisting attractors are real. In our experiment, one of these at-
tractors was chaotic and another a quasiperiodic one. It was also
possible to observe transitions between them. We called this be-
havior “self-reanimating chaos,” as dominating chaotic state was
temporarily disturbed by a quasiperiodic one and could reanimate
itself. We postulated then that the main force that allows the
jumps between two topologically strongly different structures is
“noise.” It was indeed impossible to control these jumps, but it is
also true that such a change could be involved through simple dis-
turbance of the motion plane ( just throwing). While calculated,
the “life-time” of the chaotic state was dependent on the adequacy
of estimations. An idealization was then that beneath a certain
limit, only one of these attractors (depending on initial conditions)
would be realized, and only once, and in infinite time.

Brain mixture. The animal models of the brain are very useful.
To consider them equal and to suppose that all their properties
and parameters can be transferred into a human brain is unac-
ceptable. Why should the 40 Hz oscillations in the cat (Gray &
Singer 1987) and in the rabbit (Freeman 1987) be the same na-
ture as gamma-oscillations (Kowalik et al. 2000) in humans? The
self-organized context of feature binding is in all cases rather clear,
but the fact that one specific of the many spectral components is
preferred in different substances sounds amazing and esoteric.

Fragmented attractor boundaries in the KIII
model of sensory information processing: 
A potential evidence of Cantor encoding 
in cognitive processes

Robert Kozma
Department of Mathematical Sciences, Institute of Intelligent Systems,
University of Memphis, Memphis, TN 38018. rkozma@memphis.edu
www.msci.memphis.edu/~kozmar/

Abstract: Spatio-temporal neuro-dynamics is a quickly developing field
of brain research and Tsuda’s work is a significant contribution toward es-
tablishing theoretical foundations in this area. It is conceivable that the
fragmented attractor landscapes and dynamical memory patterns identi-
fied earlier in various K-sets are biologically plausible manifestations of at-
tractor ruins, chaotic itinerancy, and Cantor encoding as applied to sen-
sory information processing.

High dimensional chaos in brain activity. An overwhelming
part of chaos studies is directed toward the description of low-
dimensional systems. This approach is partly motivated by the suc-
cess of chaos models in explaining the behavior of physical systems
with a few degrees of freedom. The limited interest toward high-
dimensional systems is also dictated by necessity, as existing chaos
methods have difficulties with describing high-dimensional sys-
tems. In fact, it is a wide-spread belief among chaos researchers
that high-dimensional systems are outside the realms of chaos
studies. Tsuda disagrees with this opinion and outlines a solid
mathematical theory of high-dimensional dynamical systems us-
ing chaotic itinerancy, attractor ruins, and Milnor attractors. We
strongly support Tsuda’s point of view, as our studies with the
EEG activity in animals also point to the crucial role of high-
dimensional dynamical effects in producing higher brain func-
tions.

The models introduced by Tsuda (1992; 1994) are relatively
simple. They are useful to demonstrate important aspects of the
attractor ruins and chaotic itinerancy. However, they are very far
from reflecting realistic high-dimensional behavior related to cog-
nitive functions. We propose that recent results by the KIII model
are in fact possible manifestations of Tsuda’s attractor ruins in a bi-
ologically plausible neural network model (Kozma & Freeman, in
press).

Studying fragmented attractor landscapes in the K-models of
sensory information processing. Following the work of Freeman
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et al. (1997) as cited by Tsuda, crucial advances have been made
in studying the extremely fragmented attractor landscape of vari-
ous K-sets and the related phase transitions induced by sensory
stimuli. Originally, the KIII model has been introduced as a cou-
pled set of second order ordinary differential equations (ODE)
(Freeman 1975; Freeman et al. 1997), where the space-depen-
dence of the dynamical brain processes has been represented in-
directly via a system of ODEs with distributed parameters. In an
alternative approach (Kozma & Freeman 1999) the space-time
dynamics is emphasized by regarding the KIII model as a discrete-
space instantiation of coupled nonlinear partial differential equa-
tions (PDE). In the latter approach, the topology across cortical
areas is directly incorporated and the link with coupled map lat-
tices having intermediate-range (mesoscopic) effects has been es-
tablished (Freeman & Kozma 2000; Kaneko 1994; Kozma 1998).

In recent studies with the KIII model the spatio-temporal self-
organization of neuro-dynamics has been addressed and it has
been applied to develop a robust dynamical memory device
(Kozma & Freeman 2001). It has been shown that noise not only
stabilizes aperiodic orbits, but an optimum noise level also acts as
a control parameter to produce a robust pattern recognition de-
vice. The observed effect is called chaotic resonance and it is be-
lieved to be a typical feature of chaotic self-organization in living
systems and, in particular, in spatio-temporal dynamics of sensory
cortices.

Noise induced transitions versus noise stabilization. On the
surface, the observed effects might resemble stochastic resonance,
as Tsuda cites (Liljenstrom et al. 1996). There are however, cru-
cial differences which have to be pointed out (Kozma & Freeman,
in press). Chaotic resonance (CR) is a collective effect of neural
populations with limit-cycle autonomous dynamics while chaos is
present already at the individual level in stochastic resonance
(SR). Noise is crucial in both SR and CR, but the role of noise is
drastically different in SR and CR, respectively. Noise is used in
SR to amplify weak input signal by de-stabilizing chaos, while
noise stabilizes chaos in CR. The oscillatory signal in the K-sets ex-
periencing chaotic resonance is not coming from the external
world but it is of internal origin. Therefore, there is an intimate in-
teraction between the noise and the oscillatory signal, which is re-
sponsible for the development of complex trajectories that re-
semble Tsuda’s chaotic itinerancies. It is very encouraging to see
Tsuda’s solid mathematical theory of high-dimensional chaos,
which is expected to provide a tool for the interpretation of the be-
havior of sensory cortices.
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How (dis)ordered is our brain?

Hans Liljenström
Department of Biometry and Informatics, Swedish University of Agricultural
Sciences, Box 7013, 750 07 Uppsala, Sweden; Agora for Biosystems, SE-
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Abstract: The dynamical view of the brain that Tsuda presents is thor-
oughly substantiated by theory and computer simulations, but strong ex-
perimental evidence for chaotic brain processes is still lacking. New meth-
ods are called for. It is also important to make a distinction between the
generating mechanisms and the observed behavior, which is complicated
by a mixing of stochastic and deterministic processes.

In the artificial neural network community there has traditionally
been a focus on convergence to stable steady states and point at-
tractors corresponding to certain patterns or memories. In con-
trast, Tsuda has been at the forefront in focusing on the signifi-
cance of the complex dynamics of neural systems. During the last

decade, the interest in neuronal noise and chaos has steadily 
increased, but lately with a shift in focus toward more high-
dimensional, or even “noisy brain chaos” (e.g., Freeman 2000). A
broad spectrum of theoretical and experimental perspectives on
these problems is given in Århem et al. (2000).

In order for the brain to function properly, it would seem rea-
sonable to assume that its underlying neural processes are ordered
and predictable. Ordered processes and signals could easily be
used for computations and for prediction. However, exact pre-
dictability is not possible, due to the uncertainty provided by in-
trinsic and external fluctuations. Yet, a certain degree of disorder
should provide flexibility to the system, so there must be a balance
between order and disorder, determined by microscopic and
macroscopic states.

Disorder in brain processes may be described as noise or chaos,
usually related to the spatial scales involved. However, the dis-
tinction between noise and chaos lies in the mechanisms and the
simplicity: chaos is generated by simple, controllable mechanisms,
noise by a large number of uncontrollable mechanisms. But the
border is not sharp: there is a continuous transition from chaos to
noise, when increasing the system complexity. Time scale is also
important. At short time scales, chaos is predictable, while noise is
unpredictable at all time scales. At long time scales, chaotic pro-
cesses seem indistinguishable from noise, when referring to prob-
abilistic properties. What can be considered as short or long time
scale is, however, system and level dependent, and not well de-
fined. For neural systems at different organizational levels, this is
an important issue if one wants to investigate the underlying
mechanisms behind the process irregularities (for further discus-
sions on these issues, see Århem et al. 2000).

Tsuda points out the importance of the interplay between mi-
croscopic (noise) and macroscopic dynamics (chaos), but the de-
scription of this interplay is not fully developed or described. For
example, there can be strong amplifications of microscopic events
to macroscopic effects that depend on other aspects of noise than
those discussed in the target article. Spontaneous activity (firing
of action potentials) in small hippocampal neurons have been as-
sociated with single-ion channel openings (Johansson & Århem
1994), and a single-action potential can, under certain circum-
stances, cause an avalanche of neural activity that is experienced
consciously (Ochoa & Torebjörk 1989).

At the same time, the synaptic noise (spontaneous emission of
vesicles) that Tsuda refers to, may in the brain (in contrast to pe-
ripheral neurons) be well in the order of stimulus evoked events,
and thus have much larger postsynaptic effects than claimed by
Tsuda (Smetters 2000). It is worth noting that spontaneous neu-
ronal firing can only increase the number of spikes reaching a re-
ceiving neuron, whereas the probabilistic nature of synaptic dis-
charges usually seems to reduce this number. The probability of
synaptic transmission of an action potential may be as low as 10%
in the cortex (Smetters 2000).

In simulations with our own neural network models of the ol-
factory cortex and hippocampus, we demonstrate how single noisy
elements can induce global oscillatory or (pseudo-)chaotic net-
work activity (Liljenström 1991; 1996; Liljenström & Århem
1997). This kind of complex dynamics, which includes oscillations,
(pseudo-)chaos, and noise is shown to play a constructive role in
associative memory tasks (Liljenström 1995; Liljenström & Wu
1995), thus supporting the view presented in the target article.
Specifically, the time for recall of memories can be minimized for
optimal noise levels, similar to stochastic resonance phenomena.
Transitions between different dynamical states, for example from
a stationary to an oscillatory, or from an oscillatory to a (pseudo)
chaotic state can result from an increased noise level, or from a
change in a control parameter associated with a neuromodulator,
such as acetylcholine (Liljenström & Hasselmo 1995; Liljenström
& Wu 1995).

The work by Tsuda and other theorists raises a number of ques-
tions that call for new theoretical methods and experimental ap-
proaches. For example, is there any structure in the observed ir-
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regular behaviors found in neural systems, and if so, can this struc-
ture tell anything about the generating mechanisms? Can the
brain tell the difference between noise and chaos, between sto-
chastic and deterministic processes? How are the different spatial
and temporal scales related, and in particular, how can the macro-
scopic activity exert influence on the processes at a cellular and
molecular scale? What is the functional significance of the ob-
served complex dynamics?

Many of the traditional methods to find chaos in irregular time
series have proved inadequate, but the method of unstable peri-
odic orbits (UPO) seems promising (Moss & Braun 2000; Pei &
Moss 1996). This method appears largely immune to the tradi-
tional limitations of biological measurements, the non-stationarity
of the process, and the contamination by noise in the recordings.
For example, Moss and co-workers have shown that certain sen-
sory receptors exhibit chaotic and stable (limit cycle) dynamics,
depending on external stimuli and conditions (Moss & Braun
2000; Pei & Moss 1996).

However, such methods can only give partial answers to some of
our questions, the most compelling one concerning the relation be-
tween neural processes and consciousness, which may or may not
be linked to cognition (Århem & Liljenström 1997). For example,
while there is no obvious contradiction, it is unclear how the syn-
chronized 40 Hz oscillations associated with attention (Crick &
Koch 1990) relate to the chaotic itinerancy described by Tsuda.

Disorder, in the form of noise or (pseudo-)chaos or both, in-
evitably exists in the brain, but there is still very little experimen-
tal evidence that the brain makes use of this disorder. From an
evolutionary point, it seems plausible that the nervous system
would have suppressed this disorder if it had negatively affected
its functions. It is even likely that the system would have evolved
to make use of any type of activity that could result as a side effect
of its functional constraints.
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Network stabilization on unstable manifolds:
Computing with middle layer transients
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Abstract: Studies have failed to yield definitive evidence for the existence
and/or role of well-defined chaotic attractors in real brain systems. Tsuda’s
transients stabilized on unstable manifolds of unstable fixed points using
mechanisms similar to Ott’s algorithmic “control of chaos” are demonstra-
ble. Grebogi’s order in preserving “strange nonchaotic” attractor with frac-
tal dimension but Lyapounov is suggested for neural network tasks de-
pendent on sequence.

At first glance, a chaotic dynamical system seems an odd choice
for the mechanism supporting the work of computational one-to-
one (in contrast with chaotic one-to-many and many-to-one) input
to output mappings by neural networks. The most commonly used
feed forward networks are not dynamical systems, since the net-
work’s future state is not a function of its present one. In addition,
the generic trio of chaotic dynamical system properties (Devancy
1989): (1) Exquisite sensitivity to initial conditions (How could
preparation of a physiological system or model obtain a beginning
value that precisely?); (2) Undecomposability, called topological
transitivity, (How can the correct and incorrect outputs be dis-
jointly separable?); and (3) Phase space objects filled with a count-
ably infinite number of (unstable) periodic points (How can a se-
quentially ordered language be mapped by orbits hopping and

“mixing” their order?) seem ill suited to the convergent unique-
ness of input-output functions of computational networks.

Tsuda evokes what he calls a Milnor attractor. The world class
topologist’s definitional proof is in essence a story of orbits that en-
ter a boundable region and do not leave it, placing points of posi-
tive measure (not necessarily fixed or periodic points) in that box
(Milnor 1985). However, knowledge of this class of attractors has
been around for over half a century (Cartwright & Littlewood
1945; Guckenheimer & Holmes 1983; Levinson 1949; Li & Yorke
1975; Lorenz 1963; Rossler 1976; Ruelle & Takens 1971; Smale
1963; Ueda 1973). They are better known as strange attractors,
called “strange” because they attract initial conditions and are
composed of neither stable fixed nor periodic points. Their re-
current global phase space motions are both expansive (stretch-
ing) and contracting (folding), a process which “mixes” the point
sequences on the attractor, destroying sequential regularity while
maintaining the attractor’s geometry. For neural networks, this
suggests weight induced stretching and contractive normalization
by the sigmoid squash function (Casey 1996).

The article’s motivating experiments in the olfactory system by
Skarda and Freeman generate claims of flexibly complex, chaotic
searching and lock-up avoiding, electrophysiological background
activity, consistent with that time’s ideas about the role of chaos in
physiological systems (Mandell 1983), and odor evoked, informa-
tion bearing olfactory bulb limit cycles emerging at an internal-
external “interface.” Tsuda (and Skarda & Freeman 1987) should
not regard the response to stimulation of the olfactory system as
typical of these interfaces, because the distribution of olfactory
neurons with diverse ligand specificities is unlike those of touch,
pressure, pitch, visual fields, and color or taste receptors on the
tongue. Unlike these, olfactory receptors and sensory way stations
are lacking obvious anatomical order and are diffusely distributed,
requiring “coincidence detectors” to put together the elements of
behaviorally definable odors (Anholt 1994).

In addition, these experiments and their conclusions fail cur-
rent standards for statistical or mathematical evidence for either
chaotic resting dynamics or the rare inverse bifurcation from
chaos to limit cycles. These include the existence of a positive Lya-
pounov exponent that is sensitive to randomization of the original
data and its Fourier coefficients in the first instance (Theiler et al.
1992), and the emergence of complex conjugate eigenvalues of
the matrix of partial derivatives characteristic of bifurcations to
limit cycles (Marsden & McCracken 1976). It appears that the
claim that “Skarda and Freeman showed the biological signifi-
cance of chaotic behavior found in the local EEG” is a bit over-
stated. However, Skarda and Freeman can hardly be faulted since,
in spite of transient claims to the contrary, it can now be fairly
stated that over 30 years of work and the weight of evidence from
hundreds of studies relating chaotic dynamics and their statistical,
“ergodic,” measures to a variety of physiological functions have not
yielded much reliably relating the two beyond the observations of
Mackey and Glass (1977) that changes in dynamical state in a va-
riety of physiological systems can be associated with the appear-
ance or disappearance of chaotic dynamics.

On the other hand, if one restricts the discussion to computa-
tional dynamical systems in the class of neurobiologically realistic,
completely connected, recurrent neural networks, RNN, and
monitors what Zipser has called the “surprisingly” realistic behav-
ior of middle layer computational neurons (Zipser 1992), then the
difference between problem solving computation-associated
emergent stable fixed points and/or their bifurcations into stable
periodic points and successful computations manifesting transient
tangencies to the shadows of erstwhile hyperbolic (orthogonal
vector fields going inward and outward) fixed points (“itinerancy
among attractor ruins”) becomes relevant. Tsuda’s Figure 5, a plot
of the Manneville-Pomeau Type I intermittency map, which can
be used to model the irregularly intermittent time structure of
vortex appearances in a turbulent flow (Berge et al. 1984) as well
as the intermittent bursting of neurons (Mandell & Selz 1997; Selz
& Mandell 1991). This figure shows entrapment of the transient
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orbit “ironed down” in the channel by the stable manifold in the
neighborhood of a destabilized hyperbolic fixed point as it tra-
verses the unstable manifold. It remains trapped there for various
times. In light of the way “noise” is regarded as a problem in this
article, it is interesting that we have found that noise increases
dwell times in the neighborhood of unstable points, “saddle sinks,”
along the unstable manifold in our model and experiments in-
volving hippocampal electrophysiological behavior (Mandell &
Selz 1993).

Tsuda’s proposition is consonant with the growing “computa-
tional control of chaos” literature (e.g., Ott et al. 1990), which has
as its underlying mathematical mechanism, the experimenter’s ad-
justment of parameters so that a point escaping from the (some-
times shadow) neighborhood of the hyperbolic fixed point along
the unstable manifold is folded back into the field of the stable
manifold’s iron, so as to return and maintain its tangency to the
computationally involved (unstable) fixed point. Adaptive compu-
tational RNN’s appear to exploit this kind of corrective mechanism
autonomously. Tsuda’s idea that transient computation is more
neurobiologically realistic than fixed and/or periodic point medi-
ated computations is intuitively appealing. Bowen’s shadow
lemma (Bowen 1978) says that in such situations, reliability is born
of orbital travel along the unstable manifold, maintained “on the
road” by the vectorial bounds of the stable manifold which keep
all orbits, even rather noisy ones, on the unstable manifold’s track,
close to the real “fiduciary” one. This proof also shows how it is
that it takes only a few points to outline a geometrically recogniz-
able attractor. This source of computational stability is a reason-
able alternative to that of fixed and/or periodic attractors, because
a real neuronal fixed point is likely to mean cell death and stable
periodic orbits, focal epilepsy, or Parkinsonian tremor (Mandell
1987).

Some of the difficulties involved with realizing predictable
function from transient computation dynamics are evidenced in
the bifurcation scenario of Figure 1, phase portraits in the squared
unit interval, I(n1) I(n2), representing the activity of two self and
other coupled “middle layer” logistic neurons (Paulus et al. 1989).
As one coupling strength parameter is increased, the bifurcation
scenario (left to right and top to bottom): period two quasiperiodic
cycles thickened, stretched “homoclinic budding” of the tori
through unstable fixed points to six quasiperiodic orbits their join-
ing into two strange attractors expansive fusion into a single global
strange attractor with fractal (Cantor set) point distribution. Con-
trary to visual intuition, the orbit does not move smoothly along
the attractor structure outlining unstable manifolds as in Tsuda’s
hand drawn schematic in Figure 4, but rather the points hop

among and between structures in an unpredictable way. If the task
involves the encoding of sequences, the potential difficulties are
obvious. In addition, how difficult must it be to partition the frac-
tal point distributions to allow the definition of the disjoint sets as-
sociated with categorizing or match to sample tasks?

In contrast with Figure 1, Figure 2 is a phase portrait of a
Hodgkin-Huxley equivalent forced van der Pol differential equa-
tion in the “strange” regime that comes closer to the orbital be-
havior proposed in Tsuda’s Figure 4 schematic (Mandell et al.
1987). It demonstrates the unpredictable choice of circling versus
crossing made by the orbit in the neighborhood of each of its two
hyperbolic fixed points. We have obtained electrophysiological ev-
idence for Grebogi’s “strange nonchaotic attractor” (Ding et al.
1989; Mandell et al. 1991), with a fractal structure but no orbital
mixing (near zero leading Lyapounov exponents). This dynamic
seems better suited for symbol sequence conservation and yet re-
mains consistent with Tsuda’s ideas about Cantor coding and the
role of itinerancy among destabilized hyperbolic points in attrac-
tors of real neural network computation.

Low-dimensional versus high-dimensional
chaos in brain function – is it an and/or issue?

Márk Molnár
Department of Psychophysiology, Institute for Psychology, Hungarian
Academy of Sciences, Budapest. POB 398 H-1394, Hungary.
Molnar@CogPsyPhy.hu www.cogpsyphy.hu

Abstract: We discuss whether low-dimensional chaos and even nonlinear
processes can be traced in the electrical activity of the brain. Experimen-
tal data show that the dimensional complexity of the EEG decreases dur-
ing event-related potentials associated with cognitive effort. This probably
represents increased nonlinear cooperation between different neural sys-
tems during sensory information processing.

In his target article, Tsuda proposes that, in brain functions like
memory and perception, high-dimensional chaos has to be intro-
duced to be able to explain the underlying mechanisms. Most of
the arguments are based on neural modeling and hypothetical
flow-charts.

Nevertheless, the notion of high-dimensional chaos may be
welcome by all those investigators who entertain the idea of see-
ing the electrical phenomena of the brain through the chaoticist’s
magnifying glass because whether the existence of mathematical
chaos in the electroencephalogram (EEG) can be verified or not
is seen as a critical aspect in those studies that seem to accept it as
an axiom. In other words, if high-dimensional chaos can be proved
to exist in brain function (as reflected by its electrical activity), this
may appear to be more appealing to those who object to the no-
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Figure 1 (Mandell & Selz). Phase portrait of two self and other
coupled “logistic” neurons as discrete maps.

Figure 2 (Mandell & Selz). Phase portrait of Hodgkin-Huxley
equivalent forced van der Pol differential equation in the “strange”
regime.



tion of low-dimensional chaos, maintaining that such a mode of
operation would be too simple with respect to the extreme com-
plexity of the brain.

Tsuda refers to Rapp (1995), whose reflections on this issue in-
dicate that “‘chaotic’ behavior . . . in the brain may not be chaotic
in the mathematical sense” (quote from Tsuda’s article). More pre-
cisely, the very existence of nonlinearity – of which chaos is usu-
ally regarded as a possible manifestation – itself was questioned
and could not be systematically proved (Pritchard & Stam 2000;
and others) in the EEG, although this view is not widely accepted
(Fell et al. 2000; and others).

It still seems unclear if the above dilemma is valid at all and if
one of these standpoints – the presence or absence of low-
dimensional chaos and nonlinearity itself – can be substantiated
by available data, which issue is left open by Tsuda. For all those,
however, who have to deal with the criticism coming from the “lin-
ear side” – who by definition reject the idea of low-dimensional
chaos in brain function – the finding of chaos (although high-
dimensional, but taken for granted by Tsuda) may come to the res-
cue, as mentioned above. It should also be noted that this issue is
strongly methodologically biased, that is, the most important
question is probably not if nonlinearity and chaos can be verified
in the EEG but how the methods of analysis applied can or can-
not handle this problem. Although most if not all of everyday ex-
perience indicates that nonlinearity dominates the features of
brain function (for example, doubling the intensity of a stimulus
never results in an evoked potential that has twice as large early
components, not to speak about the extremely complicated rela-
tionship between a stimulus and the longer latency “cognitive”
components it may elicit, etc.), the majority of related studies still
try to reject the null hypothesis that the analyzed signal is a lin-
early filtered Gaussian white noise and use different surrogate
data, which – nonetheless necessary – testing seem to apply to the
method used, rather than to the basic question itself.

A number of available data show that decreasing dimensional
complexity may be an essential feature of sensory information pro-
cessing. It was found that the dimensional complexity of the EEG,
as revealed by the calculation of its correlation dimension, de-
creased with the occurrence of the P3 event-related potential
component in a task-dependent and area-specific way (Molnár
1999; Molnár & Skinner 1992; Molnár et al. 1995). The method
used for the analysis was the “point correlation dimension” (PD2,
Skinner et al. 1994), capable of tracking time-dependent dimen-
sional changes in epochs with nonstationary features. Our inter-
pretation of this phenomenon was that this dimensional decrease
reflected increased (nonlinear) cooperativity between different
systems working in unison when the evaluation of the meaning of
a stimulus and the decision-making about its importance – typi-
cally associated with cognitive processing as signalled by the ap-
pearance of the P3 wave – was necessary.

This increased cooperativity, causing the degrees of freedom
(i.e., the dimensionality) of the system to decrease, may also apply
to the increased synchronization in the gamma frequency range,
referred to by Tsuda. However, the reader is left in doubt if the
two ways of operation (low- and high-dimensional chaos) can or
cannot coexist in the brain. Can high-dimensional chaos be also
classified as deterministic? Is it possible that both deterministic
and stochastic processes can be found in brain function but have
different biological significance? The answer to these questions
should come from data obtained in real biological experiments,
analyzed with appropriate methods not biased toward any extreme
viewpoints.
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Abstract: After critical appraisal of mathematical and biological charac-
teristics of the model, we discuss how a classical hippocampal neural net-
work expresses functions similar to those of the chaotic model, and then
present an alternative stimulus-driven chaotic random recurrent neural
network (RRNN) that learns patterns as well as sequences, and controls
the navigation of a mobile robot.

Introduction. Brain activity fluctuates between an open and
closed functional mode as suggested by brain theories, from stim-
ulus-response paradigm of behaviorism to mental representations
of cognitivism. Chaos theory of brain activity had also to face this
dilemma and evolved from completely autonomous to partially
open systems. However, the proposed model does not explicitly
address this problem, nor the related adaptability/stability trade-
off. The mathematical language used appeals to both neuroscien-
tists and modelers, but sufficiently convincing biologically grounded
mathematical justifications are lacking. Most of the functional ac-
counts can also be provided by classical neural network models or
stimulus-driven RRNN.

Theoretical and neurophysiological relevance of the model.
From a strict mathematical standpoint, mixing stochastic (e.g.,
noise) and deterministic (e.g., chaos) concepts is confusing, as it
becomes difficult to assess the contribution of each of these fac-
tors to the system’s behavior and does not resolve the nature of bi-
ological chaos. Further, the choice of Milnor attractors or Cantor
sets is not biologically justified. A biologically constrained differ-
ential system (like Hodgkin-Huxley equations) presenting this
type of attractor and modeling the desired function properties (se-
quence learning) would be an improvement.

Nevertheless, multistable systems such as Milnor attractors
could constitute an advantage for working-short-term memory,
but a drawback for LTM. A balance (possibly peculiar to each
brain state) must be found between attractor stability and itiner-
ancy. At the limit, should the dynamics actually stay for a while on
the attractor (which seems reasonable for memory states), or is the
attractor just a “check point” in the state space?

Furthermore, itinerancy provides correlated transitions among
states and possibility of path learning. This path learning, a possi-
ble advantage over transitions resulting from noise or simulated
annealing, could account for the increased memory capacity of the
system. However, is not noise necessary for the creation of new at-
tractors when the system is close to a tabula rasa? Furthermore,
how a Hebbian rule “shapes” the dynamic landscape so as to as-
sociate an attractor ruin with an input remains an unanswered
question. Do the ruins pre-exist and are the inputs allocated to one
of them according to the initial condition (and learning only
increases the attraction basins), or are they created by interaction
with the input?

SCND attractors in chaos-driven contracting systems seem to
be linked to encoding (CA3) and decoding (CA1) of temporal se-
quences. In our hippocampal model (Gaussier et al. 2000), simi-
lar couplings between associative and categorization nets allow for
the emergence of place cells (entorhinal cortex-dentrate gyrus),
and then subsequently allow to learn place cell sequences through
transitions (CA3-CA1). Our model does not operate a hierarchi-
cal embedding of the sequences, yet it learns higher order transi-
tions.
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Finally, the model attributes the multi-functionality of neurons
or brain areas to chaotic itinerancy. Nevertheless, the most illus-
trative examples of functional adaptation occur in direct relation
to changing external conditions, and could also imply structural
reconfiguration. Among other examples, Ach septal modulation of
hippocampus, when confronted with novelty, seems to act by sup-
pressing the expression of learned patterns (attractors) in recur-
rent CA3 connections, thus, favoring the instantiation of novel
patterns through distal, direct entorhinal connections. This kind
of structural reconfiguration of the system could imply more than
mere chaotic dynamics. Possibly, in more internally driven (cog-
nitive) tasks, the balance could tilt in favor of more autonomous
chaotic dynamics.

Links with random recurrent neural networks. RRNN systems
with a high degree of freedom can display high dimensional chaos
(Cessac et al. 1994). When the network receives no input, it be-
haves as an autonomous deterministic system possessing a unique
strange attractor. At variance with multi-attractor dynamic sys-
tems where the input allows choosing one attractor depending on
the attraction basin, our system uses inputs as control parameters
which change the dynamical system and therefore the attractor.
Neural fields constitute such a system, where attractors are fixed
points. In the absence of simultaneously coexisting attractors, the
behavior of an RRNN in constant interaction with inputs may be
very close to itinerancy, since a continuous smooth evolution on
the input may produce a wandering through several distant at-
tractors (see Fig. 1). In few steps, Hebbian learning stabilizes
chaotic attractor orbits into a limit cycle, implying a stronger at-
tractivity and regularity of the associated attractor, in accordance

with Freeman’s hypothesis on odor recognition. Then, slight input
changes may not be sufficient to escape from such a cyclic attrac-
tor (Daucé et al. 1998).

A further development of our model combines an RRNN and
a stable input/output layer in order to learn temporal sequences
(Daucé & Quoy 2000). The interplay between the two nets com-
bined with learning increases the congruence of the two dynam-
ics, producing the learned behavior. Like in the target model,
write-in (perception) and read-out (recall) constitute interleaved
processes corresponding to the same dynamical phenomenon.
The chaotic layer acting as a working memory feeds back the in-
put/output layer with a signal that filters the input according to a
dynamical context provided by stability of the dynamical attractor
for several steps (working memory). Thus, in a mobile robot nav-
igation application, this system learns a sequence of rotative move-
ments associated with images captured by a camera. Each image
and associated actions constitute the components chained to build
a sequence. Two distinct behaviors were observed, one when a
movement-image association corresponds to a component of the
sequence (attractor); the other, during erratic search (“itinerancy”
produced by a mismatch between input signal and inner signal)
for an image belonging to the learned sequence.
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Figure 1 (Quoy et al.). Return map giving the evolution of the mean activation of an RRNN on 2,000 steps, with continuous small
changes on input vector. One can distinguish three attractor structures and continuous transitions between them.
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Abstract: Tsuda’s article suggests several plausible concepts of neurody-
namic representation and processing, with a thoughtful discussion of their
neurobiological grounding and formal properties. However, Tsuda’s the-
ory leads to a holistic view of brain functions and to the controversial con-
clusion that the “binding problem” is a pseudo-problem. By contrast, we
stress the role of chaotic patterns in solving the binding problem, in terms
of flexible temporal coding of visual scenes through graded and intermit-
tent synchrony.

Tsuda’s article suggests relevant neurodynamic principles and
models related to cognitive processes. Specifically, chaotic itiner-
ancy is a dynamic property that may plausibly characterize the
flexibility of memory and processing operations in cortical and
hippocampal networks. Tsuda’s notion of a dynamic memory
based on chaotic itinerancy and exhibiting dynamic retention, as
well as representation by process, may enable a deeper under-
standing of the neural dynamics related to the interaction between
perceptual and memory processes. In a related framework, multi-
stable perceptual patterns and a nonstationary interface of per-
ceptual and memory processes, have been modeled in coupled
map (CM) systems (lattices and globally coupled maps, see
Kaneko 1990) exhibiting chaotic dynamics and Hebbian adaptive
coupling on several time-scales (van Leeuwen et al. 1997; van
Leeuwen & Raffone, in press).

By stressing the collective properties of neuronal interactions,
and thus implying a “global precedence” in brain processing,
Tsuda’s theory leads to the strong as well as controversial conclu-
sion that the binding problem may be a pseudo-problem. This
conclusion is based on the idea that “information representation
is dynamically realized as a whole,” and that the functions of
neural elements, such as neurons or cortical sub-areas, are not rel-
evant in themselves, but rather guided by nonlocal dynamic pat-
terns. Hence, it may be observed that Tsuda’s theory is a holistic
theory of brain function.

Although we may agree on the functional relevance of dynamic
relations between neural elements in terms of chaotic processes,
and on the idea of a functional (dynamic) rather than static mod-
ularity in the brain, in our view chaotic dynamic patterns play a
complementary role in flexible neural coding and integration pro-
cesses. Both local and global representational patterns in the brain
may be coded by chaotic neural assemblies “moving” on several
spatial and temporal scales.

The dynamic interplay of local and global processes in visual
perception, for example, has been pointed out by van Leeuwen et
al. (1998). According to this study, pattern recognition is domi-
nated by local features at an early visual stage, whereas global
structures dominate at a later visual learning stage through a holo-
genetic process. The same representational evolution has been
shown in visual classification learning (Goldstone & Medin 1994),
in which classification occurs in terms of simple features at early
stages, while being based on more complex features in later stages.
Thus, the global precedence in perception and in its neurody-
namic correlates, may not plausibly be observed over all stages of
visual cognition, and it may also be task- and context-dependent.
It has been suggested that the neural correlates of hologenesis in
visual perception are given by chaotic or intermittent dynamics
(van Leeuwen et al. 1997).

Our recent neurocomputational studies (Raffone & van Leeu-
wen, in preparation) suggest that the flexible synchrony of chaotic
neural oscillators may be a more effective code than the stable syn-
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Figure 1 (Raffone & van Leeuwen). “Superposition catastrophes”
in terms of both firing rates and stable synchrony of periodic signals
when (A) two objects in the same relatively large receptive field of
visual neurons share some features, for example, a red square and
a red circle. (B) The synchrony of periodic neurons (or assemblies)
cannot discriminate the non-shared features of the two objects. (C)
By contrast, coupling of chaotic neural assemblies  (chaos emerges
from within-assembly neuronal interactions) may solve the binding
problem with overlapping features in terms of intermittent syn-
chrony, in which red assembly is synchronized with assemblies
circle and square at different times. In both cases, excitatory con-
nections are between color and shape neurons, and inhibitory con-
nections between neurons coding the two “competing” shapes.



chrony of periodic oscillators. Specifically, unlike synchrony of pe-
riodic signals, dynamic links between chaotic neural elements (neu-
rons or neural assemblies) may enable the flexible unambiguous
representation of visual scenes when some features (and the re-
lated coding neurons) are shared by separate objects (Fig. 1).

In fact, temporal coding of visual scenes is usually assumed to
occur in terms of a transitive synchrony among periodic (e.g., si-
nusoidal) neural oscillators (e.g., Engel et al. 1992). However, this
type of synchrony indiscriminately binds even unrelated features
when the coded patterns overlap, since if a neuron (or neural as-
sembly) A is synchronized with a neuron B, and neuron B is syn-
chronized with a neuron C, neurons A and C are synchronized as
well. According to our graded synchrony hypothesis (Raffone &
van Leeuwen, in preparation), a superposition catastrophe in
terms of synchronous periodic signals is avoided by (non-transi-
tive) graded and intermittent synchrony patterns among chaotic
neural elements, which enable neurons to simultaneously partic-
ipate in multiple disjoint computations during a psychological
time-scale period (Fig. 1). In this functional logic, a flexible pop-
ulation coding in terms of synchrony grades, may take place in
neuronal networks, which may also operate in high-level visual
processing, for example, in visual working memory (Raffone &
Wolters, in press).

Hence, chaotic neurodynamics may operate in solving the bind-
ing problem, rather than simply eliding it in terms of holistic
neural representation patterns, as Tsuda’s view implies. Neural
chaos may enable a rich and flexible combinatory repertoire op-
erating on elementary processes. Even if we recognize the plausi-
bility of time-dependent or dynamic receptive fields, which are
stressed in Tsuda’s article, the remarkable degree of functional or
spatial segregation observed, for example, in the visual cortex
(e.g., Zeki & Shipp 1988), implies the reality of the binding prob-
lem. It may be that the truth lies between a holistic and a localist
interpretation of neural systems, based on stable synchrony of pe-
riodic signals, may be regarded as “the tip of the iceberg” of more
functionally relevant binding dynamics involving chaotic neural
elements.

Dynamic neural activity as chaotic itinerancy
or heteroclinic cycles?
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Abstract: I question whether chaotic itinerancy is anything new or differ-
ent to existing research on heteroclinic cycles (cycling-chaos), and blow-
out bifurcations (attractor-bubbling) that provide more detailed and bet-
ter definition for nonlinear phenomena occurring in neural systems. I give
a brief description of this research for comparison and expansion, and see
it as an important component in dynamical models of neural activity.

I am to focus on Tsuda’s concept of chaotic itinerancy which ap-
pears very similar to heteroclinic cycles or cycling chaos and asso-
ciated research that may provide better definition (Armbruster &
Guckenheimer 1988; Ashwin 1997; Buono et al. 1999; Field 1980;
1996; Guckenheimer & Holmes 1988). Also, Tsuda’s mention of
Cantor set is more synonymous with the “simpler” homoclinic cy-
cle (Bevilaqua & de Matos 2000; Guckenheimer & Holmes 1983)
rather than chaotic itinerancy. I present a brief description and
comparison of cycling chaos and mention its relevance to memory.

A heteroclinic cycle is a collection of solution trajectories that con-
nects sequences of equilibria, and/or periodic solutions (Buono et
al. 2000), and/or chaotic basins. These cycles persist under small
perturbations to preserve symmetry, manifesting in transverse re-
gions of invariant subspace (Ashwin & Rucklidge 1998). They may

exist as a coupling of localized attractor networks, typically con-
sisting of Milnor attractor types (as suggested by Tsuda).

Each attractor within the network may display basin riddling
where a number of chaotic attractors form within chaotic basins
(Glendinning 1999). Riddled basins occur in regions of parameter
space where a synchronous chaotic state is attracting on average
(i.e., the typical transverse Lyapunov exponent is negative) while
orbits embedded in the chaotic state are simultaneously trans-
versely unstable. The basin of the synchronous chaotic state may
become a fat fractal (an SCND attractor?) so that neighbouring
points belong to basins of another attractor (Maistrenko et al.
1999). Basin riddling may be full, partial or unriddled (Ashwin &
Terry 2000). This permits high complexity and variability in the
network states. In particular, the networks display trajectories
which leave through an unstable invariant manifold but return or-
bits which are relatively stable and localized, similar to chaotic
itinerancy.

In a neural system we may expect that cycling commences or
continues in response to internal and external perturbations in an
attempt to maintain symmetry. Perturbations result in bifurca-
tions that initiate heteroclinic cycles, that is, the blow-out bifur-
cation (Ott & Sommerer 1994) or the riddling bifurcation which
can give rise to attractor bubbling (Ashwin et al. 1994; 1996).

Different bifurcatory behaviour may occur at blow-out; Super-
critical or soft bifurcations display localised riddling of the attrac-
tor basin and dynamics so that trajectories from weaker attractors
that come in contact with the absorbing basin boundary are de-
stroyed. This destruction of the weak attractor occurs where the
bifurcation takes the form of a crisis, although many invariant sets
within the previous attractor may still persist at the basin bound-
ary (Ashwin & Terry 2000). In this case, synchronized chaotic
states resulting from local riddling will contain an absorbing area
from which trajectories starting near a “mixed” absorbing area
cannot escape (Maistrenko et al. 1999). This results in the de-
struction of the Milnor attractor and may form what Tsuda calls an
attractor ruin. Trajectories may cycle back through this attractor
in set-super critical bifurcation, possibly resulting in a chaotic itin-
erancy. In the set-super critical bifurcation the branch of chaotic
attractors generated after blow-out still contain the original at-
tractor in the invariant subspace and the fixed points involved in
the heteroclinic cycle (Ashwin & Rucklidge 1998). Sub-critical or
hard bifurcations result in global riddling (a Fat attractor?) and
new states of activity so that the attractor before bifurcation is no
longer contained in the new dynamic structure (Ashwin et al.
1998; Maistrenko et al. 1999).

Sub-critical bifurcations may be analogous to flexible transi-
tions in neural activity. The set-super critical bifurcation may draw
some similarities to associative learning mechanisms in the brain
resulting in robust heteroclinic cycles. Lyapunov exponents asso-
ciated with heteroclinic cycling also display transitions through zero
at the blow-out bifurcation (Ashwin & Rucklidge 1998), similar
occurrences are found in other systems displaying self-organized
criticality (Bak et al. 1987; Mendes 1999), Tsuda also found simi-
lar occurrences in his experiments.

Noise also presents a crucial element in the dynamics of the
nonlinear phenomena (as identified by Tsuda). In systems that op-
erate on the edge of chaos, noise has been shown to be crucial for
stable dynamical activity (Freeman 1990; Freeman et al. 1997).
White noise activity may be necessary to “fill in” activity that re-
flects shallow points of local minima preventing the system from
settling into spurious attractor states. In simulations of chaotic sys-
tems it has been found that noise has the effect of suppressing
nonlinear activity (Kuske & Papanicolaou 1998). Some weaker at-
tractor types can be destabilized by the presence of small amounts
of noise so that trajectories will converge toward more stable or
robust attractor networks (Kaneko 1998). Other types of Milnor
attractors in the presence of noise may lead to destabilisations by
a type of bubbling mechanism (Ashwin et al. 1994).

Therefore, white noise or some diffused activation can become
critical for maintaining stability or transitions in systems display-
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ing chaotic properties. It has the effect of maintaining system be-
haviour within a set of “useful” states, thus placing constraints on
the trajectories that the system may explore so that divergent tra-
jectories will tend to disappear, leaving more convergent patterns
of activity.

Memory formations here are described in terms of heteroclinic
cycles which initiate specific patterns of neural activity in the form
of cycling chaos in response to perturbations, in an effort to main-
tain symmetry. In the absence of appropriate perturbation, com-
plexity or neural states in the system will decompose as attractor
ruins through the destabilisation of weak or transient attractors
due to blow-out bifurcations or diffused noise.

Summary. There is much literature not mentioned by Tsuda in
nonlinear dynamics that bears resemblance to chaotic itinerancy.
Whether or not it is the same, or which form of nonlinear activity
is occurring within the brain is subject to debate and/or requires
further numerical analysis. However, the associated research as
described above should serve as an useful adjunct to Tsuda’s own
formulations or any model of nonlinear dynamics in the cerebral
cortex.
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Abstract: We question the falsifiability of Tsuda’s theory and emphasise
the need for physiologically based, quantitative models of large scale cor-
tical function that can be validated through experimental data. We outline
such a model emphasising its verification through experimental data and
possible avenues for testing Tsuda’s predictions about nonlinearities in
neural behaviour.

Tsuda’s dialogue provides a useful metaphor of neural activity but
lacks direct comparison with human brain data. There is the added
complication of testing such a theory when the brain is a complex
nonstationary system. Such systems, due to their complexity and
asymmetrical nature, create problems of numerical and analytical
tractability so that any nonlinear analysis tends to be indirect and
of symmetrical systems (e.g., Buono et al. 2000).

We provide an avenue for testing some of Tsuda’s predictions
by introducing a model of cortical neural activity (Rennie et al.
1999; Robinson et al. 1997) that provides direct comparisons with
human electroencephalographic (EEG) data (Robinson et al., in
press). We believe that the information transactions of neurons at
a microscopic scale may be approached from the analysis of
macroscopic activity, using linear approximations in the first in-
stance. The numerical nature of our model permits such linear
analysis in a stationary and controlled system and further analysis
of nonlinear dynamics if desired. Other approaches similar to ours
include those by Nunez (1995a; 1995b), Lopes da Silva and col-
leagues (Lopes da Silva & Mesulam 1990; Stam et al. 1999), Frank
et al. (2000), and Jirsa and Haken (1996; 1997).

PDE model. Our model provides a structure of intracortical and
corticothalamic feedbacks and delays that determine the attractor
dynamics exhibited by local neural networks, properties thought
to be necessary for chaotic dynamics in neural systems (Freeman

2000). Parameters such as dendritic time constants, synaptic den-
sities, conduction delays and neural gains are compatible with in-
dependent physiological measurements (Braitenberg & Schuz
1991; Liley & Wright 1994; Thomson 1997) and are used to con-
strain model fitting to experimental data.

The model consists of 2-dimensional continuum fields repre-
senting averages of firing rate and membrane potential in a macro-
scopic patch of cortex. This activity is simulated through partial
differential equations (PDEs) that embody the nonlinear firing ac-
tivity of neurons in response to imposed dendritic potentials, the
interactive activity of cortical and subcortical neural populations
(excitatory and inhibitory), and associated dendritic and axonal de-
lays. Corticothalamic feedback pathways are also incorporated,
parameterised with additional nuclei, longer axonal projections,
more localized dendritic connections, dendritic filtering and de-
lays. The analytical modelling permits inclusion of other potential
feedback loops through nuclei displaying similar characteristics.

Simulations and model fits. Numerical simulations in linear
and integral model versions display the emergence of localized os-
cillations found in the gamma range (~40 Hz) through the inter-
action of excitatory and inhibitory neurons (Rennie et al. 2000;
Wright 2000). Similar behaviour has also been occurred in PDE
versions (Rowe 2000; Wright 2000).

In the linear version spatial and temporal domains are trans-
formed via Fourier transforms of PDEs and auxiliary equations.
This permits the analysis of a complex spatial and temporal signal
within the Fourier domain, while still maintaining all the under-
lying physics. This level of detail is equivalent to spectral plots of
human EEG which are also derived from Fourier transforms of
EEG time series.

Our linear model fits have provided neurophysiological infor-
mation about changing states of arousal and the primary features
of the EEG. For example, negative thalamic feedback is concur-
rent with theta (3–7 Hz) enhancement and sleep spindling (~14
Hz). Cycling cortico-thalamic signals are responsible for the dom-
inant resonant modes in human EEG including alpha (8–12 Hz),
beta (16–20 Hz), and so-called beta-2 (24–36 Hz) peaks (Robin-
son et al., in press).

Coupled neural networks
Chaotic fluctuations in membrane potentials. Our linear model

has been shown to be valid for primary features of human EEG
when constrained by physiological parameters. The equivalent
PDE form presents a unique opportunity to test some of the non-
linear behaviour suggested by Tsuda. An example, is the case of
chaotic interspike intervals giving rise to chaotic fluctuation in
membrane potentials.

In electro-cortical models membrane potential is typically mod-
elled using an integral function (Nunez 1995a; 1995b; Wright &
Liley 1995; 1996), but due to its convoluted form we transform
this function into two ordinary differential equations (ODEs) still
preserving the original physics (Robinson et al. 1997; 1998). These
parameterised functions simulate dendritic rate constants (rise
and decay) and peak potential coupled with the arrival of impulses
from neighbouring and thalamic neurons. Additional nonlineari-
ties are generated through intracortical and corticothalamic feed-
back. The analytical form of the model permits analysis of nonlin-
ear relationships.

Coupled ODEs as strange attractors. We have also derived
steady state PDE and truncated ODE versions of our model to ex-
amine nonlinear dynamics. Our results suggest that basins of at-
traction can evolve from cortical feedback mechanisms that allow
for more complicated patterns, possibly limit cycles or chaotic
evolution (Robinson et al. 1998; 2000).

This work provides a basis from which to examine chaotic pat-
terns occurring within the brain. For example, the behaviour of
the ODE as a neural signal may follow the pattern of a strange at-
tractor due to the underlying feedback and delay dynamics em-
bedded in the equations. The coupling two ODE sources in at-
tempt to model the behaviour of two coupled neural networks may
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be observable by examining the phase relationships between the
two systems. The Hilbert transform can be used to examine the
phase synchrony of the analytic signal, by extracting instantaneous
phase and amplitude data. An index based on Shannon entropy is
used to characterize the distribution of relative phase between the
two attractors. Similar computations can be performed on EEG
data permitting direct comparisons between simulations and ex-
perimental data (e.g., Breakspear 2000; Pritchard & Duke 1992).

Summary. We find several of Tsuda’s arguments compelling but
suggest that many need to be addressed in the context of a physi-
ologically based, dynamic theory of cortical behaviour. We have
presented such a model that reproduces the primary features of
the EEG and has been verified in its linear form. We have also
suggested avenues for nonlinear analysis of chaotic dynamics
through equivalent PDE and ODE forms.
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Abstract: We consider the significance of high-dimensional tran-
sitory dynamics in the brain and mind. In particular, we highlight
the roles of high-dimensional chaotic dynamical systems as an “ad-
equate language” (Gelfand 1989), which should possess both ex-
planatory and predictive power of description. We discuss the
methods of description of dynamic behavior of the brain. These
methods have been adopted to capture the averaged or deter-
ministic complexity, and further to allow for discussion of a new
approach to capture the complexity of the deviation from such an
averaged complexity and also the complexity of interactive modes.
We also give arguments in defense of our models for dynamic
memory with chaotic itinerancy and Cantor coding. In addition,
we discuss the reality that a model of the brain and mind should
reflect.

R1. What would a theory of the brain be like?

R1.1. Why hermeneutics?

As Érdi correctly points out, the brain is a hermeneutic de-
vice in the sense that it interprets the world through sen-
sory information processing, and for us to understand the
brain, we must develop some way of interpreting its activ-
ity. The brain not only receives and processes external in-
formation but also creates a new “reality” and “actuality.”
According to Bin Kimura (1998; 2000), “reality” is a kind of
sensation that can be objectively understood, while “actu-
ality” is a more subjective experience based on sensation re-
lating to action and behavior. With the revolutionary find-
ing of Freeman and his colleagues that took place over a
period of over 40 years, we now know with certainty the fol-
lowing: Animals do not directly respond to external stimuli
but rather respond to internal images they create, and ani-

mals’ perception is a result of an autonomic interpretation
process. In the case of human cognition, a more direct in-
terpretation process must exist. In this case, interpretation
is a recursive process evolving in time that acts between
pre-understanding and perceived information. A person’s
pre-understanding should be altered in accordance with
perceived signals, while the perceived information will also
change in a manner that depends on the change in the pre-
understanding.

In order to understand the global function of the brain
we must learn how to interpret brain activity. Many people
have attempted in the laboratory to find a neuronal repre-
sentation of information, assuming the existence of neu-
ronal correlates to cognition. However, it is not possible to
obtain such a representation without knowing precisely the
actual effects experienced by neurons or neural assemblies
during the performance of the task in question. On the
other hand, such actual effects themselves are the object of
study.

In order to observe how an artificial brain creates a new
actuality in the sense of Kimura, Ikegami & Tani (see also
Tani 1998) attempted to interpret with cognitive language
the interaction between perception and action manifested
in the behavioral self-control of robots. Although it is still
controversial whether or not the interpretation provided by
Ikegami & Tani regarding the perception and behavior of a
robot with recurrent neural network (RNN) is plausible, we
consider it to be one study in one possible useful direction.
The work of Quoy et al. on robot navigation control utiliz-
ing random RNN also represents a promising direction. Ac-
tually, these works can be viewed as implementation of a
hermeneutic theory of the brain (Arbib & Hesse 1986; Ar-
bib et al. 1998; Blomfield & Marr 1970; Érdi 1996; Érdi &
Tsuda, in press; Marr 1982; Tsuda 1984; 1991; Winograd &
Flores 1986).

Raffone & van Leeuwen criticize our theory as a holis-
tic theory expressing opposition to our statements in our
target article that information representation in the brain is
dynamically realized as a whole, and that the precise nature
of neural elements, such as neurons and cortical sub-areas,
is irrelevant. They interpret our theory as a top down the-
ory and thus as a hermeneutic theory. However, as Érdi
correctly states and as we emphasized above, a hermeneu-
tic theory is plausible and even provides an adequate lan-
guage system (Gelfand 1989) that is sufficient to express an
understanding of the brain function in terms of a relation
of physiological phenomena to cognitive and psychological
phenomena. A proper theory of the brain must be a
hermeneutic theory. It is correct for Raffone & van
Leeuwen to point out what their model suggests: In early
vision, the dominance of local features processing and the
later processing of global structure. This local dominance,
however, exists only under the condition of tabula rasa in
the sense of Locke. After the development of learning, the
processing of global structure can become dominant. This
situation is clearly seen in the cognitive process of inference
in a certain language game that I introduced previously
(Kaneko & Tsuda 2001; Tsuda 1991) as a Shannon test.
Shannon invented this game when he estimated the infor-
mation content (the number of bits) contained in one (Eng-
lish) word. In this game, there are two people, A and B. In
the beginning, A has a sentence in mind, of which B has not
been informed. B attempts to determine this sentence and
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does so by first attempting to determine the first word, and
hence the successive letters. This is done by asking a series
of questions to which A can give only Yes and No answers.
Early in the game, B can only ask questions randomly, in a
bottom-up form of processing. As B’s knowledge increases,
however, a top-down form of processing that relies on B’s
context-dependent judgment becomes increasingly effec-
tive.

Let us further discuss briefly the uncertainty regarding
the understanding of neural elements. Dinse has described
recent developments in the study of dynamic receptive
fields (dynamic-RFs). Population level activity in early sen-
sory cortices expressed with respect to coordinates of the
stimulus space has been studied, and dynamic population-
RFs have been constructed (Jancke et al. 1999). Dinse has
discussed the possibility that these two types of RFs play a
functional role, influenced by the structure and function of
surrounding neural networks in early sensory cortices. In
other words, the difference between spatio-temporal dy-
namics in dynamic-RFs and those in dynamic population-
RFs clearly reflects the dependence of the identity of the
neural element or functional unit on the nature of the in-
formation processing. We would also like to mention Saku-
rai’s series of studies on the flexible coding and decoding of
cortical neurons (Sakurai 1996; 1998; 1999) as well as the
work of Arieli et al. (1996) which both Dinse and we (in the
target article) cite. These studies clearly show the depen-
dence of neuron activity on the activity of the system as a
whole or at least of the surrounding networks on a large
scale. Sakurai found that the type of activity displayed by in-
dividual neurons is correlated with global behavior, which
was characterized according to different tasks performed by
the experimental subject. Both Kay’s comment and Free-
man’s finding on the olfactory bulb support the existence of
such a relation, although Foster argues against it. The fun-
damental fact underlying our point of view is that the iden-
tity of the neuronal element cannot be known a priori.

In addition to the points raised above, adult neurogene-
sis (Eriksson et al 1998; Kempermann et al. 1997; Pincus et
al. 1998; Sakakibara & Okano 1997) in wide areas of the
brain, in particular the olfactory system, the hippocampus,
and even the neocortex may support the hypothesis of the
variability of neural representation due to dynamic reorga-
nization of neural networks. The term “as a whole” that we
use in the target article expresses the variability of the na-
ture of the functional unit in the sense that what acts as the
“unit” may change in a manner that depends on interrela-
tions within the surrounding network and also the process
of functional manifestation. Therefore, the word “holistic”
is not appropriate to characterize our theory. A term like
“relationally dynamic” would be more appropriate.

R1.2. The method of description

Freeman has proposed a mesoscopic level description in
order to identify the level at which functional dynamics
emerge. Through his own studies and other evidence, he
has found that this level is not that of a single neuron level,
that is, the microscopic level. In conventional phase transi-
tions studied in physics, many degrees of freedom at a mi-
croscopic level begin to become correlated with each other
in some critical regime of the system’s parameter(s), and as
a result macroscopic order that can be described by a few
degrees of freedom emerges. These few degrees of free-

dom are represented by so-called order parameters. How-
ever, in some complex systems, the dynamics of these order
parameters can be complex and even chaotic, though chaotic
behavior in this case is confined to a low-dimensional at-
tractor. In more complex systems, the identity of the quan-
tities that act as the order parameters may change in space
and time. In this case, the macroscopic description loses its
descriptive power. It is natural to consider an intermediate
level between the microscopic and the macroscopic levels
as a level of description where dynamically complex be-
havior can be captured. Physicists call this level the “meso-
scopic” level. Freeman borrows this idea. Freeman’s use of
the term “mesoscopic” in the description of inputs-driven
chaotic behavior in the olfactory system is appropriate, be-
cause in the brain, dynamically transient motion is generic,
as Breakspear & Friston, Dinse, Freeman, Heath, and
Kay correctly point out in their commentary.

Several methods have been employed in the construction
of scientific theories. Before discussing the method we pro-
pose in the modeling of the brain, we give some general dis-
cussion. It should be noted, though, that the following dis-
tinction between such methods described below might be
controversial, and many other ways of distinguishing such
methods based on different philosophical viewpoints are
possible. However, since we believe there is a difference
between the methods of constructing theories in the study
of the brain and the study of physics, we feel that the man-
ner of thinking we use here is useful.

One method employed in the construction of theories is
that which begins from “first principles.” Here, by a “first
principle” we mean a hypothesis or an axiom on which a
theory is based. An example of a theory obtained using this
method is Newtonian dynamics formalism. However, in the
situation that proper first principles cannot be identified or
when a theory based on first principles is not feasible, a
“phenomenological” method is adopted. The description 
of fluid using Navier-Stokes equations is a typical such
method. Thermodynamics is also such a “phenomenologi-
cal” theory. By “phenomenological” theory we here mean
that a theory is based on experiential rules. In neural sys-
tems, a useful method of modeling that seems to be based
on something very different from both a method of first
principles and a phenomenological method has been pro-
posed. This method consists of modeling in terms of the
Hodgkin-Huxley equations (Hodgkin & Huxley 1952). The
distinguishing characteristic of this method is that it in-
cludes a set of inductively derived equations that explicitly
include experiential equations. We call this type of model a
“semi-experiential model.” Banerjee’s model of spiking
neurons is at this level. Also, Aihara & Ryeu have studied
chaotic neuron model constructed by Aihara et al. (1990,
see also Fig. 9 in the target article). This chaotic neuron
model is a kind of abstraction of periodically forced
Hodgkin-Huxley equations.

It is probably true that among models which possess a
physiological background there is no generic model found
up to now other than the Hodgkin-Huxley equations. Free-
man’s population model simulates many types of dynamic
behavior in the olfactory system, as described by Freeman
and Kozma in their commentaries. Through studies of
population models like the KIII model, one can extract the
essence of the dynamics that might be embedded in vari-
ous areas of the brain. Whether this type of model can be
directly applied also to cortical systems other than the ol-
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factory system is still unclear. Therefore, it is still not known
if we can use a KIII-type model as a generic model applic-
able to all areas of the brain. Nevertheless, we believe that
population models, rather than types of models such as cou-
pled Hodgkin-Huxley equations, are more suited to de-
scribe (macroscopic) functional manifestations, such as
perception and cognition. It is important to determine the
proper variable at a mesoscopic level which can be used to
make a bridge between the physiological level and the psy-
chological level. In other words, it is important to deter-
mine the “adequate language.” It should be noted that an
electric potential or a sequence of impulses as such cannot
be considered a proper variable for the description of cog-
nition.

Instead of a direct use of a KIII-type model, we have con-
sidered another mesoscopic description in the target arti-
cle. This description is based on the realization of self-
organization in memory through chaotic dynamics.

We have also investigated a general method of study for
complex dynamical systems, which will, we believe, provide
a high-power description also for the study of the brain and
mind (see sect. R2). The basic steps of this method are as
follows (Kaneko & Tsuda 2001): (1) find structural changes
of complex behavior from both static and dynamic view-
points by means of dissecting phase space; (2) find univer-
sality, reconstructing structures and relationships, imma-
nent in various types of complex phenomena; (3) construct
an artificial system, based on the fundamental conceptual
elements of the universal properties; (4) construct a model
that describes both top and bottom levels from an interme-
diate level which is neither macroscopic nor microscopic;
(5) construct an adequate language system sufficient to de-
scribe complex systems, based on a mathematical theory for
treating the complex dynamics and processes; (6) acquire
new intuition by formulating a contra-intuitive situation
and by observing the simulated variety of complex phe-
nomena.

In the above described procedure, the method of mod-
eling mentioned in (4) corresponds to the mesoscopic de-
scription discussed by Dinse and Freeman. The present
attempt to construct a theory of the brain and the modeling
given in the target article represent a realization of this
generic method. The above steps (5) and (6) are deeply re-
lated to hermeneutics. It is important to realize the exis-
tence of a dual purpose regarding the predictive and the ex-
planatory power of a model (Gernert 1998). The above
described generic method possesses such a duality. This
dual purpose, proposed by Gernert, is also alluded to by
Ikegami & Tani. They correctly assert the importance of
dynamical systems as a tool or descriptive language, which
is thought to possess a stronger descriptive power than nat-
ural language. We agree with Ikegami & Tani, in particular
with regard to the point that high-dimensional dynamical
systems including IFS may provide an appropriate descrip-
tive language for the brain. Certainly physiological termi-
nology itself cannot be considered as possessing explanatory
power regarding cognitive phenomena, as psychological ter-
minology itself cannot be considered to possess predictive
power regarding the physiological phenomena. We wish to
obtain a third language, a language system that is capable
of thoroughly describing brain and mind. At this time, of
course, our chaotic dynamical systems terminology is still
primitive to realize such a goal.

Quoy et al. suggest a similar perspective, inquiring

about the standpoint of chaos theory concerning behavior-
ism (stimulus-response) and cognitivism (mental represen-
tation). For the modeling of animal experiments involving
higher functions, most of which consist of a type of stimu-
lus-response, we have attempted to interpret the internal
states of the brain as mathematical functions or distribu-
tions by observing the stimulus-response relations. We em-
ploy high-dimensional chaotic dynamical systems for this
inferred internal representation. In order to decrease the
ambiguity of an interpretation of this type of animal exper-
iment, we have constructed (Tsuda & Hatakeyama 2001) a
formal theory of the structure of task-related functional
manifestation. We have applied this theory to a series of ex-
periments conducted by Sakagami et al. (Sakagami & Niki
1994; Sakagami & Tsutsui 1999). The theory was able to
predict all possible types of discrimination of stimuli and
conditions that can be represented by neurons found in the
prefrontal cortex. We believe that chaotic dynamical sys-
tems can be used to represent the neural correlates of cog-
nitive processes that can be detected by mesoscopic level
measurements, such as f-MRI, optical recordings, and (lo-
cal) electroencephalograph. If a neuronal dynamical system
possesses point attractors and limit cycles only, this neural sys-
tem lacks adaptability to varying environments. Thus it will
inevitably become destabilized if we attempt to use it to
model a full range of animal behavior. The emergent dynam-
ics capable of providing this adaptability should possess a
moderate stability that may be a global stability. Our idea is
to use chaotic itinerancy as a means of guaranteeing both sta-
bility and adaptability.

R2. Reality of the model

R2.1. Falsifiability of the theory

In our attempt to find a new method of understanding the
brain and mind at a mesoscopic level, we face several diffi-
cult problems. First, a hermeneutic theory seems to lack
the falsifiability property demanded by Popper as a mini-
mum condition that a scientific theory must possess, since
this theory can develop self-consistently through the evolu-
tion of the pre-understanding, allowing for a self-consistent
interpretation to be reached. A hermeneutic theory consists
of components, each of which could itself consist of a quan-
titative model and its predictions, and these, rather than the
theory as a whole, can possess falsifiability. From another
standpoint, we could construct a theory – something that
could be termed a “qualitative model” – for the purpose of
providing a plausible story of neurons or neuron assemblies.
Such a theory should be constructed to allow us to carry out
a more proper and deeper understanding of the brain and
mind. Thus, as Rowe & Wright state, a quantitative model
like theirs can lead to elemental models supplying such
a qualitative theory. For example, the PDE and coupled
ODEs which constitute an elemental level of Wright’s the-
ory (2000) of the brain activity and its cognitive function can
possess falsifiability, while the whole theory can be justified
as a hermeneutic theory.

In biology, it has been asserted that the correspondence
between structure and function is crucial (Li & Hopfield
1989; Szentágothai & Érdi 1989). Following this assertion,
we have attempted to construct a structure-based model 
of biological function. Actually, we constructed a skeletal
model, based on anatomical data that were collected in de-
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tailed studies over thirty years by Szentágothai. In the mod-
eling, we hypothesized that a type of structure that is com-
mon to various areas possesses a common function, and a
structure specific to a given area possesses a specific func-
tion (see also Li & Hopfield 1989). Both models presented
in the target article were constructed according to such a
principle, and thus these models are examples of a kind of
skeletal model.

Heath has proposed a cognitive model consisting of dy-
namic neural networks, which could possess a predictive
power. He also discusses the possibility of converting the
principles given in section 3.5 of the target article into pre-
dictions that can be verified.

One of the characteristics observed in chaotically itiner-
ant behavior is a long time tail of the time-dependent mu-
tual information. This tail often exhibits an algebraic damp-
ing. This characteristic exist even when noise is present,
because the frequency of stagnant motion in the vicinity of
an attractor ruin cannot be decreased by such a perturba-
tion. The presence of a long time tail indicates the presence
of recurrence of similar dynamic behavior in the evolution
of the system, and hence it may provide a mechanism ca-
pable of producing short-term memory, like working mem-
ory. Nicolis and Tsuda (1985) proposed a feasible mecha-
nism of magic number seven plus minus two with chaotic
dynamics with large fluctuations, and further demonstrated
(Nicolis & Tsuda 1989) that these long-range correlations
may lead to a universal power law known in the study of nat-
ural languages as the Zipf law. The presence of recurrence
of similar dynamic behavior can work effectively when an
episode is embedded in the CA1 region by the use of Can-
tor coding. During a period of approximately 100–200
msec cortical-hippocampal loop time, only a few events in
an episode will be able to be embedded in a Cantor set. This
loop time would not be sufficient for the transformation of
episode from a short-term memory to a long-term memory.
Some kind of recursive dynamic behavior may facilitate this
type of transformation.

At this point, we must consider the fact that a memory is
not independent of its cortical context, as Heath points out.
Therefore, taking into account context cues in studying the
process of memory dynamics and formation is essential. It
is certain that our present model lacks this feature. Al-
though the significance of context cues has been empha-
sized by many authors, no mathematical model that is ca-
pable of incorporating them has yet been proposed, as far
as we know. We believe that such context cues are input into
other lower cortical areas in the more abstract form of codes
rather than raw sensory information. Usually, this input cor-
responds to a feedback signal. For proper modeling, corti-
cal neural activity representing codes must differ from that
representing raw sensory information. In our hippocampal
model, CA3 activity consists of chaotic itinerancy, but CA1
activity does not. This is because Cantor coding is carried
out in the cross section on which CA3 chaotic activity is con-
stant. Coding hierarchy is generally limited only by the non-
linearity of the chaos that provides a grammar of chaotic
motion. This limitation can be observed in the present
model (see also Aihara & Ryeu). If code signals strongly
affect the chaotic behavior in CA3, the Cantor coding will
be fragile, and this calls into question its realism, as pointed
out by Érdi, Freeman and Kay in the case with feedback.
We believe that the feedback signal is generally different in
quality from the feedforward signal. Thus we doubt that the

feedforward and the feedback connections can be thor-
oughly described in the same form as in coupled oscillators.

It would be very useful for further development of the
study of dynamic memory to identify those features of our
model with stochastic renewal and Heath’s model with
chaos control that are similar and those features that are dif-
ferent, since they have a similar structure of the interacting
“modules” (see also Heath 2000a).

R2.2. Could inputs and modifiable synapses 
be a bifurcation parameter?

The brain is an open system in both energetic and infor-
matic senses. With respect to energy, the brain is a far-from-
equilibrium system, since it is maintained in a high energy
state by the influx and outflux of energy and matter. With
respect to information, the brain receives external infor-
mation and dictates action on the environment in response
to this information. However, contrary to Banerjee’s claim,
we assert that such inputs should not take the form of bi-
furcation parameters.

Banerjee’s observation concerning transitory dynamics
made with regard to his treatment of spiking neurons is cor-
rect. This observation is that the attractor created in any
cortical “column” is continually influenced by neighboring
“columns,” subcortical areas, and the environment. For this
reason, this attractor changes or disappears, and a new at-
tractor is created. This is the nature of the transitory dy-
namics characterizing the system. Through this observa-
tion, Banerjee studied these transitory dynamics using a
treatment in which the inputs are represented by a bifur-
cation parameter. Quoy et al. also consider inputs as bi-
furcation parameters. Although we appreciate the models
proposed by Banerjee and by Quoy et al., we are skeptical
of their assumption that inputs can be treated as bifurcation
parameters.

We now consider the situation in which a system receives
inputs from other systems. In the case that invariant sets
like attractors are present in phase space, the change of
such invariant sets in parameter space can be described as
a bifurcation. To treat an input as a bifurcation parameter
is equivalent to assuming the presence of such invariant
sets, and hence this treatment becomes feasible only when
the inputs change extremely slowly, compared with the sys-
tem’s dynamics. This is not a valid assumption in a dynamic
system like the brain or any of its subsystems in which the
input rapidly varies. It is crucial for understanding a brain
of this nature to investigate it as a dynamical system influ-
enced by varying inputs that may be produced by other dy-
namical systems either with or without noisy perturbations.
By viewing inputs as originating from other system, rather
than as bifurcation parameters internal to the system, the
dynamic behavior of the model can be better characterized.

When considering inputs as variables controlled by other
systems, rather than as bifurcation parameters, a total sys-
tem can be viewed as an IFS. Pollack (1991) used recurrent
neural networks for the system under study and incorpo-
rated the external world in the form of varying inputs. In a
dynamic memory model, we used recurrent neural net-
works with inhibitory neurons for the model brain system
and modeled probabilistic synapses as varying inputs. This
model appears to contain a Hopfield spinglass-like model,
since it is essentially reduced to a Hopfield net when the
probability characterizing these synapses approaches the
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inverse of the system size. Even in the neighborhood of this
value, our net is dynamically equivalent to the Hopfield net,
as Banerjee points out. Despite this fact, there are dy-
namics embedded in our model that are essentially differ-
ent from any dynamics exhibited by the Hopfield net. In
particular, our model exhibits a chaotic transition between
far-from equilibrium quasi-stationary states. (It should be
noted that this is not a transition from an equilibrium state.)
Increasing the probability to a certain value, chaotic itiner-
ancy appears. In our chaos-driven contracting system, the
model brain is a stable network and varying inputs are pro-
vided by a chaotic dynamical system which exhibits high-
dimensional chaotic itinerancy or low-dimensional chaos
with a restricted grammar. This grammar is restricted in the
sense that it possesses forbidden symbol sequences. We re-
gard this as a skeletal mathematical model of the olfactory
system and the hippocampus. Other studies in which inputs
are treated as variables controlled by other dynamical sys-
tems have recently been published by Gohara and col-
leagues (Gohara & Okuyama 1999a; 1999b; Gohara et al.
2000; Sato & Gohara 2000; Yamamoto & Gohara 2000).

As an important factor other than inputs that can influ-
ence the system, Banerjee discusses synaptic modulation.
For a reason similar to that in the case of inputs, it is not
feasible to model this as a bifurcation parameter when one
wishes to understand the mechanism of nonstationary and
itinerant behavior. Only if one tries to understand the sys-
tem’s dynamics as consisting of the change undergone by
invariant sets can inputs and synaptic modulation be treated
as bifurcation parameters.

R2.3. Landscape lacks a reality

Freeman claims that attractor landscapes in the olfactory
system are recreated in each inhalation period. Freeman
identified this recreation as the olfactory flexibility. He
criticizes our model as being too rigid and not allowing for
the change of phase space structure. A similar criticism is
also made by Ikegami & Tani. However, despite this crit-
icism, we assert that our memory dynamics model does in-
deed exhibit structural change of phase space under the
Hebbian learning. With regard to this point, Quoy et al.
questioned how the dynamic landscape changes via Heb-
bian learning. We now briefly explain this process. The
learning of new patterns alters the transition of memories
in such a way that new memories are incorporated into a
sequence of memories which appear dynamically to dis-
play chaotic itinerancy. In this way, a new sequence of
memories is created.

Hebbian learning classifies the closeness of input pat-
terns in the following way. In a conventional associative
memory model, a new input pattern is placed within the
basin of a certain attractor. Here, some attractors are a
memory representation and others are a parasitic one. If
that pattern is learned, the basin structure becomes com-
plex due to the formation of a new basin (see also Amari &
Maginu 1988). In our dynamic memory model, there is no
conventional (geometric) attractor, and hence no conven-
tional basin is present. In place of such a basin, at least one
hole is present, which links each memory representation to
all the others. We have not obtained a mathematical proof
of whether riddled basins appear in the present model. We
have not found symmetry in our model like that which
Breakspear & Friston, and Rowe have discovered. It is,

however, certain that a similar structure to that of riddled
basins has been observed in numerical studies. Because, in
the situation that the transition of memories is allowed,
Hebbian learning acts along the transition paths also; that
is, the transition paths are also reinforced. The closeness of
input patterns can thus be defined in terms of temporal or-
der, since the transition occurs between patterns with a
large overlap. In this way, as more patterns are learned, the
phase space structure becomes more complex.

In the manner of Freeman, here we would like to use a
metaphor. Imagine we are observing a stream at a fixed po-
sition. Then, we always observe different water molecules
at each time, even in Escher’s waterfall chain. For this rea-
son, we cannot find invariance at such a level. On the other
hand, a river possesses certain structures at different levels
– from mesoscopic to macroscopic – as a flow of water. We
may be able to find some invariance at such levels and we
may recognize universality within the continually changing
behavior. In contrast to Freeman’s intended demonstration
in his allusion to Escher, we think Escher’s chain demon-
strates a method of representing the creation of new “qual-
ity,” even though the structure appears static. Geometric
impossibility embedded into this static structure forces us
to change the viewpoint from which we consider the pic-
ture and enables us to find new “quality” hidden in the
structure, for instance, the waterfall chain may provide us
with a hint about the four-dimensional “qualia” of the
scene. New “qualia” at a mesoscopic or a macroscopic level,
which is not manifested at a microscopic level, might be
created in the same way, as Dinse discussed.

Freeman and Quoy et al. both use the term “land-
scape.” Freeman in the expression “attractor landscape”
and Quoy et al. in the expression “dynamic landscape.” We
think the use of this word is misleading with regard to both
our model and the KIII model, and maybe also with regard
to other far-from equilibrium dynamic systems. Concern-
ing this point, we give the following discussion from the
general theory of nonlinear dynamical systems (Kaneko &
Tsuda 2001). If there are at least two extremely different
time scales characterizing the system in question, then the
system’s behavior can be described by dynamics on a static
landscape and its dynamic modulation. Here, the landscape
can appear to be a rugged landscape. Such an extreme sep-
aration of time scales is often observed in nonlinear sys-
tems. However, no evidence for such a separation of time
scales has been found in the very flexible system like the ol-
factory system that Freeman studies. In such flexible sys-
tems, the “landscape” cannot exist. Thus the statement that
the “landscape is recreated” is misleading. If we interpret
Freeman’s intention correctly, we may be able to describe
this as something like “epigenetic landscape” proposed by
Waddington. However, this cannot be described by any-
thing that could be considered a “landscape.” (Although,
when considering the dynamic behavior of the entire
process of development, it might be possible a posteriori to
account for this development in terms of a landscape.) De-
scribing a system with a landscape is inconsistent with the
flexibility of the system, and the concept of a landscape does
not apply to the flexible brain.

R2.4. Action is contained implicitly in probability terms

Kay points out that our model lacks an action term, and for
this reason she suggests that we introduce a somatosensory
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system. She asserts that by doing this, interfacial dynamics
may emerge. This is closely related to the causality problem
considered by Ikegami & Tani, context cues considered
by Heath, and falsifiability considered by Rowe & Wright.
Kay is right that our model does not explicitly contain an ac-
tion term. However, the model implicitly contains such a
term. A typical mathematical model in which an action term
exists implicitly is given by Samuel Karlin (1953). He for-
malized the situation in which a living system with internal
state that can be expressed by a variable x must make a de-
cision to choose a certain action i among many possibilities
at a certain time. Let pi(x) be the probability of choosing an
action i, where x is the state of the living system. We con-
sider this process to be described by a dynamical system.
That is, the state of the system is determined by a dynami-
cal system. As the result of the choice of an action, the state
must change in accordance with this action. Thus the state
evolves as a parametrized dynamical system, Fpi(x)(x). Since
pi(x) depends on the state x, a change in the state causes the
probability for the choice of the succeeding action to change
also. This Karlin’s formulation gives the first example of
IFS.

The system described above exhibits a stochastic renewal
of dynamics, since the dynamical system governing the de-
velopment of the state depends on the action chosen. If the
probability function for the choice of the action is described
by a certain chaotic dynamical system, this type of decision
making can be described by a skew product transformation.
In this case, the feedback effect of the action on the state of
the system is implicitly taken into account. We believe that
the feedback from the environment as influenced by sys-
tem’s action is thus implicit. As stated in section R2.1, this
framework yields “coupled” systems with characteristics
that differ from those typically seen in what Breakspear &
Friston present as symmetrically coupled nonlinear oscil-
lators. There may be a level at which brain activity can be
described by coupled nonlinear oscillators, but it is doubt-
ful that a symmetric coupling system would be useful in the
modeling of actual brain activity. In general, the forward
connections in the brain are related to a sensory informa-
tion processing, while the backward connections are related
to the context, that is, the intention, motivation, situation,
condition, and so on. The context may appear to be a cue
code for sensory information. The key factor is the exis-
tence of a type of “connection.” In the brain, the type of
connections between feedforward and feedback differs.
For this reason, it is important to study the effects of skew
product transformations.

Because the chaotic behavior found in the olfactory bulb
(OB) is caused by the feedback connections from the
prepyriform cortex (PPC) possessing contraction dynamics,
the presence of physical coupling is likely, as Kay mentions.
We would like to know what the feedback is in such a case.
Damped oscillations are enhanced and then become
chaotic in the OB. According to Freeman, this happens
only in a motivated condition like in the hunger state of an
animal. Hence, the feedback to the OB is a motivational sig-
nal. This situation of the “coupling” can be realized in the
following dichotomy. The input-output function of the OB
is chosen to be F1 in the presence of motivation, and cho-
sen to be F2 in the absence of motivation, where chaos is as-
sumed not to exist. Then, the main dynamics in the PPC ap-
pear as the process of chaos-driven contraction dynamics.

Taking into account the stimulus-induced stochastic re-
lease of synaptic vesicles, whose physiological significance
is correctly pointed out by Liljenström, contrary to the
claims of Freeman and Breakspear & Friston, we con-
sidered the metaphor of “neuronal decision making.” One
can extend the present model to include the state depen-
dence of the probabilities for the choice of action. This is a
topic for future study. Karlin investigated ergodicity and the
convergence of the distribution, assuming a simple form for
the state dependence of the probabilities, and showed as a
special case that the limiting distribution is a singular distri-
bution on the Cantor set. Later, Norman (1968) demon-
strated a convergence theorem in stochastic learning mod-
els. Bressloff and Stark applied Norman’s idea to the
dynamics and learning in neural networks in a series of
works (Bressloff & Stark 1992; Stark 1991). Thus, our
model can be viewed as a model of action-driven (though
yet uniform) dynamic memory and perception.

R2.5. What is the relation between the model 
and reality?

One common type of criticism was made by Foster, among
others. Essentially, this criticism is that the theory is math-
ematical, but neither psychological nor physiological. This
is why we present our theory for a dynamic brain from a dif-
ferent viewpoint. As we emphasized above, especially in
section R1, it is important to seriously consider the levels of
a model. Most commentators neglect this point. Modeling
from an overly physiological point of view results in a the-
ory that lacks explanatory power for cognition, and model-
ing from an overly psychological point of view results in a
theory that lacks predictive power for the mechanism of
cognitive processes that should be related to brain activity,
as long as we consider the mind to be a physical phenome-
non. At a certain time in scientific history, those in the field
of artificial intelligence neglected brain activity, especially
neurophysiological facts. Perhaps they believed that the
physiological nature of the brain need not be studied for a
full understanding of cognition. On the other hand, people
who have studied neural network models have tended to
neglect symbol manipulation. Perhaps they did/do not re-
alize how something expressed symbolically could possess
a neurophysiological basis. Then, the connectionist ap-
proach proposed neural networks that can treat symbol ma-
nipulation through its dynamics. This was epoch-making.
However, it seems that connectionists have not yet found
an adequate language system, whose importance we em-
phasized in section R1.

In the situation that most approaches do not provide an
adequate language system to make a bridge between psy-
chological and physiological levels for understanding of the
brain and mind, we have chosen a mathematically inter-
pretative direction of study. In particular, we have chosen
in this article a high-dimensional chaotic dynamical system
as one possible explanatory and predictive language.

Recently, psycho-physiological experiments have been
conducted on various areas of the brain. In these experi-
ments, a cognitive task is performed by an animal or a per-
son, and while it is being performed the activity of neurons
or neural assemblies is monitored. Then, neural correlates
are investigated. This represents a promising direction of
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study, but has the serious weak point that neural correlates
must be interpreted in terms of natural language, taking
into account the meaning of the task and the neural activ-
ity. Moreover, there might be an “experimenter effect.”
This is not surprising, since the object of experiment is a
very complex system.

We have proposed a mathematical formal theory to 
analyze the task performed in these experiments itself
(Tsuda & Hatakeyama 2001). We are now studying the es-
tablishment of a formalism for such experiments and at-
tempting to construct a method of extracting the immanent
chaotic dynamics of neural systems exhibiting cognition.
We point out that Descartes’ principles of thoughts (Des-
cartes 1701) should still be useful in our attempt to gain a
deeper understanding of the brain and mind.

The Lorenz model for atmospheric unpredictable and
nonperiodic motion is also relevant to the present discus-
sion (Lorenz 1963; 1991). Following Saltzman’s observation
(Saltzman 1962), Lorenz derived three-dimensional ordi-
nary differential equations for the purpose of describing 
atmospheric circulations, and he found chaotic motion re-
sulting from the instability of convective solutions. How-
ever, the chaotic motion he found, which is called Lorenz
chaos, has never been observed in real atmospheric motion.
Apparently, therefore, his model does not simulate real tur-
bulent motion of atmosphere. Then, why did the Lorenz
model impart such a strong scientific impact (much
stronger than that of conjecturing of the “butterfly effect,”
which alleges that a butterfly flapping its wings in China can
drastically change the weather in New York)? It should be
noted that this impact does not stem from falsifiability nor
from provability of this model. In fact, this impact is not due
to the ability of this model to correctly simulate physical
phenomena. Rather, this impact is due to the fact that his
chaotic model displays the essence of atmospheric motion,
its immanent chaotic dynamics. A similar type of modeling
is seen in Kaneko’s series of studies of complex phenomena
in terms of coupled map lattices (CML) and globally cou-
pled maps (GCM) (Kaneko & Tsuda 2001 and references
cited therein). We believe this way to capture certain fea-
tures of reality (or it might be better to use the term “actu-
ality” in place of “reality,” according to Bin Kimura), some
of whose features may be hidden but can emerge in obser-
vation with an adequate language, is effective and possesses
an explanatory and predictive power at a level that differs
from that of physiologically realistic models, like the KIII
model that Kozma recently developed. The underlying im-
portant point in this discussion is that we believe strong ev-
idence that chaotic dynamics exist in living brains, as Lil-
jenström, Mandell & Selz, and Rowe & Wright have
suggested.

Given the present situation with regard to a theory, Lil-
jenström’s suggestion that the mechanism of emergent
properties should be discriminated from observed behavior
itself is crucial for maintaining the reliability of theory. If an
effect of macroscopic activity on activity at the cell level
and/or molecular level emerges, through the mechanism of
macroscopically emergent properties, a qualitative theory
could be directly tested in the laboratory. As Molnár sug-
gests, the discovery of an unbiased method to describe the
potential functional significance of high-dimensional chaotic
or stochastic behavior will help to further the development
of a qualitative theory.

R3. Poor man’s chaotic itinerancy 
and chaotic code

R3.1. Mechanism of chaotic itinerancy

Many commentators have reported dynamic behavior 
similar to chaotic itinerancy (CI). (Rowe supplies many ref-
erences on chaotic dynamical systems which generate phe-
nomena similar to chaotic itinerancy. Komuro has investi-
gated a possible mechanism of CI in some mathematical
framework (Komuro 1998; 1999). We have described CI as
chaotic transition dynamics resulting from a weak instabil-
ity of Milnor-type attractors, that is, a chaotic transition
among attractor ruins, and before such an instability arises,
a certain complex phase space structure similar to a riddled
basin appears. Érdi, Breakspear & Friston and Rowe in-
quired about the structural conditions of the emergence of
CI. Breakspear & Friston particularly emphasize the sig-
nificance of symmetry in the emergence of Milnor attrac-
tors and a riddled basin. (They corrected our citation of
works on the riddled basin. As they point out, the first pa-
per on the riddled basin is that of Alexander et al. 1992. The
paper by Grebogi et al. 1987, which we cite in the target 
article is concerned with fractal basin boundaries multi-
dimensionally intertwined on arbitrarily fine scales.) Since
symmetrically coupled systems like globally coupled maps
(GCM), possess certain symmetries, such systems have
been studied thoroughly. As Breakspear & Friston point
out, studies of the Milnor attractor have been carried out
most actively in the context of symmetrical systems. Typical
such studies are reported in a series of works by Ashwin and
his colleagues (Ashwin & Terry 2000). However, as Kaneko
showed (1998), symmetrical coupling is not a necessary
condition for the emergence of Milnor attractors, since they
also appear in GCM systems without such symmetry.

Let us assume that a dynamical system f: M r M, where
M is the phase space, commutes with a certain group action
q:M r M on M; that is fq 5 qf. Let S(q) be an invariant
set under the action q: S(q) 5 {xuqx 5 x}. Then, f(S(q)) 5
S(q), because f(qx) 5 f(x) and q( fx) 5 f(qx) 5 f(x). When
a dynamical system possesses this type of symmetry, its ef-
fective dimensionality can be drastically reduced, and as a
result the detailed structure of its invariant sets can be in-
vestigated. In this respect, the assertion concerning sym-
metry made by Breakspear & Friston is very relevant
with regard to the mechanism responsible for Milnor at-
tractors and riddled basins. However, such symmetrical sys-
tems are not characteristic of the brain, as networks of neu-
rons in the brain are asymmetrically coupled. Nevertheless,
the questions of what type of symmetry could be present in
our asymmetrically coupled neural network and how, if it
exists, could this symmetry affect the potential invariant
sets are interesting to consider. Also, we note that the noise
effect is crucial in CI-like transitions, since neural systems
in the brain exist in a noisy environment. As Rowe points
out, it is important to note that depending on the type of
Milnor attractor in question, the stability with respect to
noise differs. In relation to this, it should be noted that noise
can induce basin riddling even after a blowout bifurcation,
that is, even in the presence of a transversely positive Lya-
punov exponent (Lai & Grebogi 1996).

Feudel et al. found a CI-like phenomenon in the double
rotor system with small amplitude noise (Feudel et al.
1998). In this system many periodic orbits coexist. Among
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these, the higher periodic orbits possess very tiny basins
which disappear under the influence of noise, leaving only
the low periodic orbits. This situation is similar to that 
in the KIII model, which Kozma and Freeman found.
Due to fractal basin boundaries, long chaotic transients 
appear before the system falls into a periodic orbit. Orbits
are trapped for some time in the vicinity of periodic at-
tractors, but eventually are kicked by noise into the fractal
boundary region.

Figure 5 in the target article shows the presence of the
simplest Milnor attractor and also presents a model to de-
scribe our simulation results, empirically determined quasi
one-dimensional return maps. Mandell & Selz treat the
situation shown in Figure 5 in the target article as a bifur-
cation point of tangent bifurcations. In this treatment, for a
parameter a, in the case a , ac, where ac is a bifurcation
point, there exist a pair of stable and unstable fixed points
(this resembles a saddle-node pair), and for a . ac no fixed
points exist and chaotic behavior appears, so that the sys-
tem at a 5 ac is structurally unstable. This is not the case
we consider. In our case, this one-dimensional map repre-
sentation is a projection of high-dimensional dynamics. All
fixed points, each representing a different memory, are re-
duced to two critical points. Furthermore, in our dynamic
memory model, this critical situation is robust with respect
to changes of the system’s parameters, such as the strength
of synaptic connections, the steepness of the input-output
function of the neurons, and assigned probabilities, within
the regions that chaotic itinerancy occurs. We have found
evidence through network simulations that suggests the
possibility of such a critical system becoming structurally
stable. One such possibility is realized through the appear-
ance of structurally stable heteroclinic cycles (Chawanya
1995; 1997; Guckenheimer & Holmes 1988; May & Leonard
1975; Nishiura & Ueyama, in press). Because the appear-
ance of structurally stable heteroclinic cycles requires dif-
ferentiable vector fields that are equivariant with respect to
a symmetry group, whether our case corresponds to such
an ideal case is unknown. Our assertion is that the essential
dynamics may be due to indifferent fixed points, not hy-
perbolic fixed points. The appearance of non-hyperbolicity
yields characteristics of nonstationary statistics, such as a
long time tail of the correlations (Yuri 2000, and references
cited therein).

From the result of studies on several types of neural net-
works with different structures (Körner et al. 1987; 1991),
the empirically determined conditions for CI are as follows.
(1) The presence of networks, such as recurrent neural net-
works, which guarantees the coexistence of attractors. (2)
The presence of a mechanism causing the neutral stability
of attractors. It is by this mechanism that Milnor attractors
are generated. (3) The presence of perturbations that
weakly destroy such an attractor. These conditions are not
well-suited for the appearance of CI, and for this reason,
mathematically detailed studies are needed for a deeper
understanding of this mechanism.

R3.2. Ubiquitous chaotic itinerancy

Many commentators discussed transition phenomena sim-
ilar to that of CI. Many CI-like phenomena other than those
we consider in the target article have been studied. Break-
spear & Friston assert the significance of chaotic tran-

sience. Rowe suggests the possibility of heteroclinic cycles
in CI-like phenomenon, and emphasizes the significance of
heteroclinic cycles in neural networks. Banerjee discusses
a topological attractor as representing the overall dynamics
of coupled Milnor-type attractors in his spiking neuron
model. This topological attractor is identical to an itinerant
attractor. Kowalik applies the name, “self-reanimating
chaos,” to a transition between weakly barriered chaos and
quasi-periodic oscillations. Borisyuk hypothesizes that CI-
like activity in neural assemblies may be describable as be-
havior of a dynamical system with a time-dependent coef-
ficient. In relation to Borisyuk’s idea, we constructed a
simple model consisting of unidirectionally coupled chaotic
systems with distinct time scales (Okuda & Tsuda 1994).
When a fast system forces a slow system, the slow system
usually becomes simply noisy. This could be used to simu-
late the motion in a dynamical system with noise. Con-
versely, when a slow system forces a fast one, CI-like be-
havior often appears. This may correspond to the slow
modulation of a certain parameter of a dynamical system. It
might also be similar to the CI-like behavior observed by
Mandell & Selz in neural systems.

Among other systems, CI-like phenomena in random re-
current neural networks, which were discovered by Quoy
et al., are very interesting. Their system used for robot nav-
igation control can learn both patterns and pattern se-
quences. CI-like phenomena appear in this system when
the input signal and the inner signal are mismatched. This
behavior and function of chaos and CI-like high-dimen-
sional activity are very similar to those Tani found in his ro-
bot control system (Tani 1998). On a related note, Break-
spear & Friston suggest the involvement of NMDA
channels in the neural mechanism causing the relatively
rapid change of attractors. They further predict that if 
the phase space includes many saddles, “typical orbits” 
will shadow a saddle and that this may be realized in
monoamine-mediated changes of functional synaptic cou-
pling. This prediction is worth checking. However, one
question arises: Does the phenomenon of irregular transi-
tory orbits accompanied by a saddle network that can be
shadowed by typical orbits belong to the same class of sta-
tistical behavior as CI orbits? Mandell & Selz (1993)
found that the effect of noise increases the residence time
of orbits in the neighborhoods of unstable states, and they
actually reported the observation for it in the hippocampus.
Since NMDA channels in the hippocampus are responsible
for LTP, this noise effect might guarantee the structural sta-
bility of transitory dynamics through the noise-induced
shadowing.

As described above, CI-like phenomena have been found
in many neural systems. Most researchers are mainly con-
cerned with the topological similarity of these phenomena,
but what we have asserted as their important characteris-
tics are as follows. (1) The appearance of many approxi-
mately zero Lyapunov exponents, but with large fluctua-
tions. (2) It possesses nonstationary statistics, and hence
convergence theorem might not hold. These observations
regarding the statistics of the CI in our network model in-
dicate the non-existence of shadowing of both individual or-
bits and attractors. Sauer has identified this CI characteris-
tic and proposed this non-existence as a definition of CI
(Dawson et al. 1994; Grebogi et al. 1990; Sauer 2000; Sauer
et al. 1997).
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R3.3. Chaotic code

In the target article, we stressed the functional significance
of a certain class of chaos and networks. The required char-
acteristic for the functional significance is information mix-
ing due to large fluctuations of information flow (Matsu-
moto & Tsuda 1985; 1987; 1988; Nicolis & Tsuda 1985;
1989). This class of chaos should appear as intermittent ac-
tivity. A network displaying this class of chaos can preserve
input information in its dynamic activity. Thus, such a net-
work may provide a dynamic mechanism of working mem-
ory, which should be arbitrarily long term. CI possesses the
same characteristic. Furthermore, as proposed in the target
article, CI consists of high-dimensional transitory dynamics
which may provide a dynamic mechanism for linking mem-
ories. The linking of memories is necessary for categoriza-
tion and perceptual drifts. Here let us recall the criticism
made by Ikegami & Tani that since memory dynamics
should be restricted by semantics and causalities under
“embodied conditions” through behavior, it is not possible
to simulate memory dynamics only with CI, which does not
have a clear correspondence to the real world. This criti-
cism seems to be worth considering. In thinking “embod-
ied conditions,” studies with machines, like robots, are very
important. However, we should not overlook the fact that
the world robots are experiencing is not real, but man-
made, in which the experimenter’s intention has been built
in advance. A theory based on such biased experience of ro-
bots leads us to over-interpretation.

It is important to inquire into the nature of the neural
mechanism of chaotic activity, as Érdi points out. In this re-
gard, we identified three distinct situations (Tsuda 1991):
(1) chaotic activity at one level results from chaotic activity
existing at a lower level; (2) chaotic activity at one level is
independent of that at the lower levels, and rather it results
from damped oscillations enhanced by feedback from ac-
tivity at higher levels; (3) chaotic activity at one level results
from a self-organization at the lower level.

A representative model for each of the above situations
has been investigated: Kaneko’s CML and GCM for case
(1), Freeman’s KIII model for (2), and our dynamic mem-
ory model for (3).

Contrary to the assertion of Mandell & Selz, chaotic dy-
namical systems can be viewed as computation machines.
In general, the expanding dynamics can be used to “read”
the information given initially or as an input. For instance,
let us consider the discrete dynamics defined by the func-
tion f(x) 5 2x, where x is a real number. Here, the variable
x is represented by a binary expansion. This type of dy-
namics is equivalent to a shift dynamics in which the deci-
mal point is shifted one place from left to right per iteration
of the dynamics. In contrast, contracting dynamics can be
used to “write” the information. For instance, the discrete
dynamics defined by the function g(x) 5 x/2, where x is a
real number represented by a binary expansion, is equiva-
lent to shift dynamics in which the decimal point is shifted
one place from right to left per iteration. Usually, in chaotic
dynamics these two types of dynamics appear alternately,
and on average the process of “readout” of the information
given in the initial distribution is dominant. This situation
corresponds to the presence of a positive Lyapunov expo-
nent. The function of chaotic dynamics as a computation
machine can be realized in the case that the expanding and

contracting dynamics are embedded by cut and paste op-
erations in each eigen-direction, as is seen in Moore’s gen-
eralized shift (Moore 1990; 1991), and also in the case that
these two kinds of dynamics are well separated along each
eigen-direction, as is seen in Smale’s horseshoe map (Smale
1967). In particular, in the former case, a Turing machine
can be embedded at each point in the phase space of a gen-
eralized shift map. In this respect, a generalized shift can
be viewed as a universal Turing machine.

An essential feature of the horseshoe map as a chaotic dy-
namical system is described by the transformations f(x, y)
5 (2x, ay) (for 0 , x ,1/2) and f(x, y)  5 (2 2 2x, 1 2 ay)
(for 1/2 , x ,1), where 0 , a ,1/2. Here, the dynamics of
x are expanding, chaotic dynamics that are independent of
y, and the dynamics of y, which consists of two types of con-
tracting dynamics, depends on x. A horseshoe map is the
simplest example of a chaos-driven contracting system. The
x variable is responsible for reading the information pro-
vided by the initial conditions, and the read-out of this in-
formation is written in the dynamics of y direction. Actu-
ally, in the contracting case, 0 , a ,1/2, a Cantor set is
generated along the y direction. This observation led us to
the study of Cantor coding in chaos-driven contracting sys-
tems. In neural systems, unidirectional coupling usually
produces overlapped IFS. In a totally-disconnected IFS,
this loss of information does not exist, and thus in this case
coding and decoding have a one-to-one correspondence
(see also Aihara & Ryeu).

Borisyuk and Érdi asked the advantage of chaotic cod-
ing. As mentioned in the target article, the advantage of
Cantor coding is the ability for encoding and decoding a
large amount of information hierarchically in some finite
region of phase space, that is, with a restricted activity level.
In other words, a set of temporal patterns with infinite
length can be hierarchically embedded, in principle. This
coding is robust with respect to noise to some depth. In the
hippocampus, embedding of a large amount of information
with an extremely long code for a short period is not nec-
essary, and hence this coding is realistic, even in a noisy en-
vironment. Hierarchical embedding in terms of Cantor
coding in the hippocampus may represent the emergence
of a grammar concerning the time order of events. In CA1
or PPC, the neural activity changes in a short time, on the
order of 100 msec. This implies that Cantor sets can only
be observed by the superposition of snapshots of activity
during an interval of approximately 100 msec. The func-
tional significance of the metric of Cantor coding, about
which Heath inquires, lies in the identification of the close-
ness of episodes as the closeness of codes. Through the in-
troduction of such a metric, we can realize that any code in
a code sequence can be a cue signal for the association of
episodes.

Raffone & van Leeuwen demonstrated one merit of
chaotic coding by showing that a flexible synchrony of
chaotic neural activity is more effective than a stable syn-
chrony of periodic activity. They propose to use this effec-
tiveness to solve the binding problem. Friston (1997) also
discussed the significance of transient coding, which is as-
sociated with a transient motion, and he confirmed its exis-
tence in some functional-MEG data. These are a nice real-
ization of our idea that the dynamic link of memories in
terms of chaos and CI may provide a means of flexible in-
formation processing in perception (Kaneko & Tsuda 2001;
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Tsuda 1993; 1996). The “binding” of features shared by dif-
ferent objects through the synchrony of chaotic oscillations
should inevitably generate an alternation of synchronized
and desynchronized states. This alternation activity should
be CI-like transitory dynamics. The strengths of interac-
tions among oscillations determine synchronization. In 
opposition to this, chaos is effective for causing rapid de-
synchronization, because of its characteristic exponential
divergence of nearby orbits. Contrary to the assertion of
Raffone & van Leeuwen, we still think that the binding
problem is only a pseudo-problem. To solve the binding
problem, people have used spike coincidence and neural
oscillations, that is, temporal information, because rate cod-
ing fails for this problem. It is not yet clear if the cause of
this problem is spike coincidence or neural oscillations.
This is something of a chicken-and-egg problem. If an os-
cillation is periodic, or binding is created by the coincidence
of feature-detecting neurons, nonflexible operations, and
even combinatorial explosion cannot be avoided. Ironically,
in such a nonflexible case, the concept of “binding” is ap-
propriate. In order to avoid this difficulty, and to make “bind-
ing” functional, we must abandon the concept of bound 
feature(s). If we use chaotic oscillations, a flexible syn-
chrony can appear. In such a case, the “binding” process will
proceed in the neural dynamics without a help of feature-
detecting neurons. The term “binding” cannot be an ele-
ment of an adequate language system.

R3.4. Real chaos?

Borisyuk, Freeman, Kowalik, Liljenström and Mol-
nár point out the difficulty to discriminate high-dimen-
sional chaos from noise. With regard to this, we first note
that the chaos analysis of experimental data is still at an im-
mature level. We believe that there will be great develop-
ment of chaotic dynamical systems analysis in the future.
Before the discovery of deterministic chaos, the analysis of
random phenomena was commonly carried out by first
finding the probability distribution of an appropriate ran-
dom variable and then calculating average values and fluc-
tuations of observables using this distribution. The true
fluctuations can be approximated by calculating the sec-
ond, third, and (if necessary) higher order moments of the
distribution. Also, in time-series analyses, the autoregres-
sion method has been used in linear prediction theory. Re-
cently, Okabe et al. proposed a new statistical method that
includes nonlinear filters, which has proved to be effective
when the data is stationary (Okabe & Inoue 1994; Okabe
& Kaneko 2000; Okabe & Nakano 1991; Okabe & Yamane
1998). However, because the discovery of deterministic
chaos implies that a certain class of random phenomena
can be described by a deterministic rule, such as that pro-
vided by a dynamical system on some smooth manifold, it
has come to be believed that many types of random phe-
nomena result from deterministic chaos and their ran-
domness originates from a nonlinear transformation of
phase space, and further a random time series can be con-
sidered projections of orbits on a manifold on to the real
axis. Unfortunately, however, chaos analysis in its present
form, and especially the embedding technique, is feasible
only for relatively low-dimensional dynamical systems. It is
ineffective for extremely high-dimensional cases and also
in the presence of nonstationarity.

Given the present situation of our understanding of

chaos, Kowalik states that there is no strict limit between
noise and high-dimensional deterministic chaos in the
sense that we are not able to clearly distinguish between
these. However, before jumping to a conclusion in this re-
gard, it is prudent to note Liljenström’s observation that
chaos is predictable over short time scales, while noise is
unpredictable over any time scale, but no discrimination
can be made over long time scales. Concerning this point,
it is also important to note that in statistical physics, the hy-
pothesis of molecular chaos at a microscopic level is neces-
sary to derive the velocity distribution of an ideal gas as a
macroscopic quantity. The presence of molecular chaos
guarantees the ergodicity of the system. With respect to this
velocity distribution, physical properties of a gas can be ex-
pressed as an average plus a variance. This method is very
often formally applied to other stochastic phenomena. Usu-
ally in such treatments, the average term is viewed as a de-
terministic component and the variance term as a noise,
equivalent to molecular chaos. Since a biological system is
not a Hamilton system but a dissipative system, we are con-
cerned with far-from equilibrium conditions. To maintain
such a system in a far-from equilibrium state, an external
source of energy is necessary. Therefore, generally a far-
from equilibrium system is caused to be in high energy
level. Under such conditions, aperiodic and unpredictable
behavior of the averaged deterministic component is often
observed. In order to discriminate this deterministic ran-
dom behavior from the molecular chaos, physicists have re-
ferred to the former as “deterministic chaos” or “macro-
scopic chaos.” Since these chaotic states appear in a
far-from equilibrium system, deterministic chaos should
have a much greater power than noise. During the early
stage of the study of deterministic chaos, the indicator of
such chaos used in experiments was the power spectrum.
There are two merits of using the power spectrum to dis-
criminate chaos from noise. First, while both chaos and
noise have continuous spectra, the power of chaos is much
greater than that of noise, which is almost negligible. Sec-
ond, since chaos appearing in dynamical systems is gener-
ated by bifurcations, one can insure the existence of chaos
through the change of control parameters. At this stand-
point, enhanced noise can be interpreted as resulting from
chaos.

It should be further noted here that most common meth-
ods of experimental data analysis are problematic. In order
to determine whether the neural activity observed in any
given case is described by CI, the measurement of neural
activity over a long time is necessary. Interestingly, the data
found in long-term measurements of neural activity usually
exhibit nonstationarity. This is in contrast to the case of
shadowing of an entire attractor, that is, a set of orbits, in
which the long-term nature of a measurement implies sta-
tionarity. When we wish to study nonstationary neural phe-
nomena experimentally, is it possible to use conventional
methods of measurement and analysis? When we wish to
observe the neural mechanism corresponding to a single
act, are data obtained as the average of neural activity mea-
sured over many trials, such as a firing rate or correlation
coefficients, meaningful? If so, what is the assumed condi-
tion? To use statistical quantities under the assumption of a
stationary process reflects the belief that a single time se-
ries of neural activity is meaningless or that such time se-
ries possesses ergodicity. However, ergodicity does not
likely exist for behavior-related neural activity. Therefore,
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people who attempt to use (stationary) statistical quantities
in effect deny the meaningfulness of a single time series of
neurons or neuron assemblies. But a single time series of
neural activity has been observed to be associated with a
single act in the laboratory, and hence it is known that such
an activity is indeed meaningful. It would thus seem that we
have to invent a new dynamical systems analysis which is
able to treat high-dimensional and/or nonstationary data.

R4. Dynamic brain revisited

R4.1. Multiple codes

As Dinse points out, a cortical “module” is flexible enough
to be able to adapt to rapid changes in the environment, al-
lowing for the link between fast time scales on the order 
of msec and time scales of learning. Here, the alternation
of synchronization and desynchronization of the activity of
neuron assemblies often appears, associated with this adap-
tation process. This chaotic alternation between synchro-
nization and desynchronization could be described by CI.
In this case, the output resulting from an input is deter-
mined by the internal dynamics, which are not fixed as a
rigid input-output relation or a stimulus-response relation,
but change flexibly, in a manner that depends on the out-
puts (see Freeman, Kay, and Kozma). Thus there is a
feedback of the action from the environment to the system
that generates internal dynamics. Our idea is that any feed-
back represents code at some level. We think that this might
be one origin of multiple codes in neurons or neuron as-
semblies. In general, there cannot be a feedback process ex-
isting in a hierarchical information processing system. If
there were some feedback an originally hierarchical struc-
ture would be broken, resulting in multiple codes. Foster
introduced John’s works on the interactions of coherent en-
sembles in neural cell assemblies. Here we briefly intro-
duce Sakurai’s series of works (Sakurai 1996; 1998; 1999) on
multiple codes based on neural cell assemblies.

Sakurai studied the hippocampal and temporal cortical
neuron activity exhibited during the performance of simple
auditory, simple visual, and configural auditory-visual dis-
crimination tasks. He found behavior-correlated activity of
neurons, which emerged as task related. It was found that
approximately one third of the task-related neurons over-
lap. A single neuron’s activity represents the difference be-
tween stimuli to be memorized and stimuli to be discrimi-
nated in a given task. However, cell assemblies that arise
through functional connections between neurons are nec-
essary in order to represent the difference between kinds
of tasks. He called this sharing of roles between individual
neurons and neuron assemblies “dual coding.” From this
viewpoint of cell assemblies, the function of a single neu-
ron is not fixed, but changes flexibly depending on its rela-
tions with other neurons. A single neuron can belong to
many different cell assemblies, and for this reason, a single
neuron can represent different functions in manners re-
lated to task, purpose, the functions of other neurons, and
so on.

We believe that by taking into account macro-action, as
Kay suggests, the existence and function of multiple codes
will become clearer. There is a work of Iwamura and Tanaka
(1978) that reports the discovery of active touch-related
neurons in the somatosensory cortex of monkey. These neu-
rons become active only when a monkey holds an object

that it has come to possess through its own action; that is,
such neurons do not respond when an object is placed in its
hands.

These findings show that the presence of feedback from
behavioral levels to individual neurons and neuron assem-
blies generates multiple codes at neuronal levels. We em-
phasize again that feedback signals carry codes corre-
sponding to action, not action itself.

R4.2. Dynamic memory

We have proposed a dynamic memory model for episodic
memory and also for olfactory perception. Here, for the
first time, following Foster, we present the definitions of
episodic memory, semantic memory, and working memory,
which we envisage in the target article. Our definitions of
semantic and episodic memories basically follow Tulving
(1972), but we have added a new perspective. Declative
memory is classified into two categories, semantic memory
and episodic memory. Semantic memory is memory con-
sisting of general knowledge. Semantic memory is appar-
ently separated from the spatio-temporal causality of events
occurring in our daily experience. The database in a com-
puter is similar to semantic memory in this sense. However,
since knowledge is essentially internal (Gernert 1996), se-
mantic memory may be represented in a manner that de-
pends on the internal dynamics, and hence can change,
while a database is external and fixed.

Episodic memory is that concerning individual experi-
ence in the spatio-temporal context. This individual experi-
ence includes “future memory” consisting of plans for fu-
ture actions (Meacham & Leiman 1982; Tsukada 1992).
Meacham and Leiman call this “prospective remember-
ing.” Individual experience is, in general, memorized
chronologically, but it can be memorized according to
causality if a mechanism, in which the prefrontal cortex par-
ticipates and by which the hippocampal dynamics can be in-
fluenced, that precedes consistency in experienced events
operates. In our dynamic memory model, we treated this
type of causality using a chaotic rule generated through the
interactions between internal dynamics and external infor-
mation (acquisition of knowledge). Generated CI provides
a flexible grammar for linking memories of events, in which
highly correlated memories are linked. In order to develop
the theory and the model in the manner in which Ikegami
& Tani suggest, introducing an explicit state dependence
of the assigned probabilities and a mechanism of learning
probabilities should be helpful (see also sect. R2.4).

We follow Baddeley’s definition (1986) of working mem-
ory. According to Baddeley, working memory consist of a
conscious-related system providing a procedure of obtain-
ing knowledge and a temporal storage of knowledge, which
is necessary for performing complex cognitive tasks. For
this reason, Baddeley calls this “active memory.”

In the target article, semantic memories are assumed to
be represented as disperse spatial patterns in the network.
We represent them by dynamical fixed points of the Milnor
type. A weakly collapsed Milnor attractor can form an at-
tractor ruin. Since we assume that a chain of knowledge 
associated with experienced events forms an individual
episode, we consider episodic memory to consist of a chain
of semantic memories. We have cited two possibilities: that
in which a code sequence representing chaotic orbits which
link events is embedded in Cantor sets, and that in which a
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series of events is embedded in Cantor sets. In either case,
the Cantor coding of a chain of knowledge is equivalent to
the decoding of an episode.

Ikegami & Tani addressed an important question con-
cerning a seemingly paradoxical feature of memory struc-
ture. On one hand, memory structure appears stable, but
on the other hand memory dynamics are chaotic. We do not
think that this is a paradox. Dynamics that are unstable in
the usual sense are not always unstable from the informa-
tion theoretical point of view. In chaos with non-uniform in-
variant measure that is absolutely continuous w.r.t. the Le-
besgue measure, and in transitory dynamics like CI, there
exist quantities that remain stable in the unstable dynamics
of orbits. One such quantity is the difference between the
Kullback information before and after applying the Perron-
Frobenius operator. In the case with uniform invariant
measure, this quantity is equivalent to the maximum Lya-
punov exponent but in the case with non-uniform invariant
measure, it is related to the fluctuations of Lyapunov expo-
nents. In the latter case, the time-dependent mutual infor-
mation provides an appropriate quantification of such fluc-
tuations. The slow decay of the mutual information in time
reflects an information mixing, which ensures the conser-
vation of information content through the dynamics in cou-
pled non-uniform chaos (see also sect. R3.3). This implies
that input information repeatedly appears and disappears
in each local element but is globally maintained. A coupled
system can then be viewed as an information channel,
though its dynamics are chaotic. In other words, the inputs
can be extracted as outputs, even though the state of the
channel is chaotic. We believe that the appearance and dis-
appearance of the information in places over the system
carries meaning.

Many theories and models of learning and memory have
been proposed. However, in general, models lack an ex-
plicit coding scheme and a description of its relation to neu-
rodynamics. McClelland et al. (1995) have discussed the
details of a possible mechanism for the consolidation of
memory. For this reason they are concerned with tempo-
rally graded retrograde amnesia, which typically appears in
patients with hippocampal lesions like H.M. The presence
of temporally graded retrograde amnesia indicates a con-
solidation of memory based on a continual interaction be-
tween the hippocampal system and the neocortical system.
We have constructed a model for a CA3-CA1 interacting
system, which we present in a separate paper (Tsuda &
Kuroda, in press). In this model, cholinergic and GABAer-
gic innervations are introduced, and Cantor coding is
found. The new point in such models is that the phase of
theta rhythms may control whether the dynamics in CA3
become CI-like dynamics or stable attractor dynamics. In
connection with the comments of Foster and Heath, we
wish to consider the method by which a stimulus sequence
is recalled by use of Cantor codes. There could be two types
of recall, direct and indirect. When a person experiences
some events, sensory stimuli enter CA3 from the entorhi-
nal cortex, with the influence of internal dynamics, and as
a result, CA3 begins to display the associative dynamics,
such as CI. Then, a Cantor code is retrieved from this par-
tial sequence of events in a manner that depends on the
length of the sequence of events. In this way, the recall of
an episode from partial information is possible. This is the
usual situation in the recall of a stimulus sequence. Another
type of recall that can occur is here called the “Proust phe-

nomenon.” In A la recherche du temps perdu, by Marcel
Proust, the character Marcel suddenly recalled a forgotten
episode when he put a madeleine dipped in black tea into
his mouth. We all experience this type of recall of episodes
in our daily life. We offer a hypothesis about the mechanism
of “Proust phenomenon” in which we employ Cantor cod-
ing. The distinguishing characteristic of “Proust phenome-
non” is that a specific stimulus, which previously had no re-
lation to any episodic memories, triggers a complete recall
of some episode. In this situation, CA3 cannot be stimu-
lated directly by such a stimulus, but rather it must be the
case that CA1 receives direct stimulation from the entorhi-
nal cortex. A direct perforant path from the entorhinal cor-
tex to CA1 allows for this. Since in CA1 a code sequence is
embedded in a cluster of a Cantor set, a certain level of this
Cantor cluster contains a single code corresponding to a
stimulus which is created in the sensory cortices or the en-
torhinal cortex. Then, at such a level, a code sequence can
be evoked in CA1 or in the neocortex through the tempo-
ral evocation of a trace of the code sequence in CA1. This
hypothesis is consistent with hypothesis 2 in Treves and
Rolls (1994), where they state that the perforant path may
be involved in the carrying of a cue signal that can initiate
the retrieval of an episode.

We here emphasize that a feedback signal in the brain
should consist of a code, so that anatomical couplings do not
imply the usual formalization of synaptic connections, nor
the usual formalization of oscillation couplings. What we
envisage is as follows. We believe that the above described
situation holds in the connections from the prepyriform
cortex to the olfactory bulb, and also in those from CA1 to
CA3 through the neocortex and the entorhinal cortex, in
both of which we hypothesize the formation of Cantor cod-
ing, described by dx/dt 5 F(x) 1 c hy, dy/dt 5 G(y) 1 w
x, where hy 5 0 if y is included in a certain level of cluster,
and hy 5 1 otherwise.
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