
Uncertainty, Possible Worlds and Coupled Dynamical Recognizers

Takashi Ikegami

�

Sony Computer Science Laboratory,

6, rue Amyot, 75005 Paris

The Graduate School of Arts and Sciences,

University of Tokyo, 3-8-1 Komaba, Meguro-ku,Tokyo 153

and

Makoto Taiji

y

Institute of Statistical Mathematics,

4-6-7 Minami-Azabu, Minato-ku, Tokyo 106

Abstract

We propose a new way of studying social dilem-

mas and the epistemic structures of agents. Here we

study the iterated prisoner's dilemma game as played

by cognitive players, where each player optimizes his

or her own future actions by making an internal model

of the opponent's behavior. A kind of recurrent neu-

ral network called a dynamical recognizer(DR) is used

to make these internal models. The internal model of

each player's behavior is constructed from a �nite his-

tory. That is, many internal models are equally accu-

rate in mimicking the opponent's behavior. If the op-

timized future action varies depending on which of the

models is chosen, we construct branches in the world

line to represent several possible future worlds. De-

pending on the game situation (e.g. the payo� struc-

tures, the length of past sequences to be considered,

the uncertainty level in choosing models, etc.), the

structures of the branching of world lines (i.e., of pos-

sible worlds) will vary. In some situations, the world

line is surrounded by many possible worlds, each with

di�erent behaviors. In particular, we focus on how

players can attain mutual cooperation in some of the

world lines.

1 Introduction

We sometimes recognize that unavoidable uncer-

tainty is pervasive in our lives, and we neverthe-

less communicate with each other and understand in-

tended meanings. How is this possible? There is a
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conversation between Chuangtse and Hueitse that ad-

dresses this problem.

\Chuangtse and Hueitse had strolled on to the

bridge over the Hao, when the former observed, "See

how the small �sh are darting about! That is the hap-

piness of the �sh."

"You not being a �sh yourself," said Hueitse, "how

can you know the happiness of the �sh?""And you not

being I," retorted Chuangtse, "how can you know that

I do not know?"

"If I, not being you, cannot know what you know,"

urged Hueitse, "it follows that you, not being a �sh,

cannot know the happiness of the �sh."

"Let us go back to your original question," said

Chuangtse. "You asked me how I knew the happi-

ness of the �sh. Your very question shows that you

knew that I knew. I knew it (from my own feelings)

on this bridge. " (Chuangtse, B.C.4th C.).

We would like to modify the last part of

Chuangtse's phrase as follows: \I know the happiness

of the �sh because I am not the �sh, as you are not

me." We here study uncertainty in game-playing situ-

ations, but we are not going to eliminate uncertainties.

Nor we are going to discuss strategies which counter-

act uncertainties. Our main message in this paper is,

rather, that because of uncertainty we have notions of

autonomy and insights into life itself.

Under conditions of uncertainty, we cannot directly

communicate with each other. Any communication

has to be made via interfaces. We consider such an

interface to be comparable to a language system or

our physical constraints(e.g. forms, the number of

hands, etc.). These interfaces are autonomous in the

sense that they have their own dynamics. Di�erences

that are generated between a real object and its model



are attributed to the nature of the interfaces through

which the model is communicated. If such di�erences

remain small, we say that the situation is stable, but

if they increase, we say that it is unstable. When

such instability increases, we may call the object au-

tonomous, in the sense that we cannot generate a

model which can perfectly predict its behavior. Agents

achieve true autonomy when they obtain subjective

judgement. Thus, it is important to study them in a

situation in which the objective and subjective worlds

di�er. In other words, the di�erence between the real

world and its internal models in agents is essential for

autonomy.

In the present paper, we discuss the role of uncer-

tainty in playing games. The uncertainty comes into

play when we make models of opponents' behavior on

the basis of a �nite set of data.

2 Models of Players and Possible

Worlds Simulation

2.1 Prisoner's dilemma game

The playing of a simple game involves one of the

most straightforward interfaces possible. Here, we

study the iterated prisoner's dilemma(IPD) game as

an example. This game has been extensively studied

in the past two decades(see e.g. Axelrod, 1984). In

the 2 person IPD game, each player has to play to

"defect" or to "cooperate" repeatedly. In the present

paper, we represent COOPERATION by 0 and DE-

FECTION by 1. The payo� matrix to be studied is

given as follows.

Player 1's Player 2's Player 1's Player 2's

score score move move

1 1 0 0

0 p 0 1

p 0 1 0

q q 1 1

To preserve the condition of the prisoner's dilemma,

p and q should hold such that 1 < p < 2 and

0 < q < 1. In Axelrod's original game, these parame-

ters were p = 5=3 and q = 1=3. We know that e�ec-

tive strategies for playing the game that are selected

through evolutionary dynamics change drastically de-

pending on these parameters (Lindgren and Nordahl

1994, Matsushima and Ikegami 1997). In our simu-

lations below, we choose values of p and q so as to

perturb the game playing situations.

2.2 Game player as Dynamical Recog-

nizer

A dynamical recognizer was �rst discussed by Pol-

lack (Pollack 1991, Kolen 1994), and was indepen-

dently used for studying dynamical aspects of lan-

guage by Elman (1991). It is a kind of two-layed re-

current neural network, in which the recurrent outputs

are fed back to the weights of the function networks

rather than to the input layer. Therefore, network

connections can temporarily be updated while the net-

work is receiving input signals.

For the purposes of the present study, the recurrent

outputs record the opponent's current status, and the

context network converts these outputs into weights

in the function network in order to predict the next

action. Here and below we will refer to the space

constructed by the outputs from the function network

(including both recurrent and network outputs) as the

context space. The output is taken from a node of the

function network. In this study only one input and one

output node are necessary since the IPD game has only

two actions, cooperation and defection. The output is

rounded o� to 0 (cooperation) and 1 (defection). The

network is expressed by the following equations.
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denote output states. We name the net weights as

function network (w

ij

) and context network (u

ijk

).

In the equations above, nonlinearity exists only in

the sigmoid function. We can control the degree of

instability by changing the parameter � (through this

paper, we set � = 6:0). In practice, we use two in-

put neurons and three output neurons. One of the

input neurons is �xed in its state as a biasing network

(through this paper, we set y

1

= 0:3), while two out-

put neurons are called recurrent outputs and are used

recurrently to determine the function network.

To train a dynamical recognizer to mimic an oppo-

nent's behavior, a simple back propagation is usually

used ( Pollack 1994, Taiji and Ikegami 1998); that is,



the connections are changed in proportion to the am-

plitude of the distance between the ideal and current

output values. In practice, the error E(n) after the

n-th game is computed by

E(n) =

n

X

k=1

�

n�k

(z

0

(k) � d(k))

2

; (3)

where d(k) is the target, i.e. the actual opponent's

action in the k-th game, z

0

(k) is the predicted ac-

tion by the network, and � is a parameter which con-

trols forgetfulness. For most simulations, � = 0:95 was

used. The derivative of this error was propagated in

the context network.

In the present study, instead of using back propaga-

tion, we quantify the strength of the connections u

ijk

as either 0 or 1. Therefore we can exhaustively search

all structures to arrive at those that best mimic the

opponent's behavior. Since the context networks no

longer have continuous values, the supposed language

class is severely limited. However, we �nd that not

only �nite automata but also many other non-�nite

automata are mimicked by those networks.

2.3 Both Players generate Internal Mod-

els of each Other

A simulation cycle goes as follows. First, a pair

of initial strings is given, a set of initial moves of 0

and 1. They are either given randomly or in speci�c

patterns. Each player then generates their opponent's

model on the basis of those initial patterns. Using the

model, each player predicts his opponent's expected

future moves by giving all possible combinations of in-

puts in strings up to the length of 10. Then the play-

ers choose the input string that is expected to bring

the highest value and play the �rst element of that

string. Then, having one new bit of information con-

cerning their opponents' strategy, players can update

their models. The next simulation cycle is then per-

formed in the same way, and successive iterations of

the cycle follow. Games between autonomous optimiz-

ers with such simulation capabilities are �rst discussed

by O.R�ossler in 1994.

By introducing uncertainty, represented by �, a

number of internal models are degenerated. It means

that there exist an equivalent class of models which

can mimic the opponent with the accuracy �, but the

models have di�erent net structures from each other.

Any model of the index k which satis�es the error con-

dition,

E

optimal

< E

k

< E

optimal

+ � (4)

can form an equivalent class and therefore each

model can be a candidate for the internal model.

This error condition may not cause any problems

if all models that have degenerated propose the same

decision as their next move. If they happen to propose

di�erent moves, however, the game dynamics will de-

pend on which model is chosen. Any criterion of model

selection can be introduced here to let players continue

the game, but rather than proceed in that way, we

branch a world line instead. A world line is de�ned

as a sequence of cooperations and defections. When

there are more than 2 equivalent internal models and

thier proposed decisions are di�erent, we bifurcate the

world line. The players in the di�erent world line have

di�erent choice of moves. We thus have two parallel

world lines, i.e., two parallel possible worlds. Some-

times the internal models of both players degenerate

as well. In such cases, we have 4 possible worlds, in-

cluding the real orbit. No two world lines can interact

with each other.

3 Simulation of Possible Worlds in

Model Space

3.1 World Branchings

When there is no uncertainty in the optimiza-

tion process, mutually defecting attractors are always

present at the end, except when some special initial

con�gurations are used. We obtained the same results

in our previous simulations with continuously valued

context networks (Taiji and Ikegami, 1998). As higher

uncertainty levels are allowed, more internal models

can be degenerated. There exists a threshold value

in the uncertainty level, above which the world lines

begin to branch.

Fig. 1 shows an example of a branching pattern,

where the payo� matrix is given that is close to Ax-

elrod's original matrix. We set the uncertainty level

to � = 0:01. All branchings that occurred before time

step 80 are depicted in this �gure. As shown in the

�gure, most of these branchings are attracted to mu-

tually defecting (MD) states, although they can have

di�erent internal models, as will be shown below. Only

two of the world lines are attracted to non-MD states.

Non-MD states include mutually cooperating states or

transient states that last until at least 200 time steps

have passed.

How are the dynamics of the two world lines which

are attracted to non-MD states di�erent from those

of other world lines? Suppose we simulate a game
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Figure 1: An example of the branchings of world lines.

This �gure can be read as an evolutionary tree with a

single root. In this example, two branches, which are

indicated by arrows, are attracted to non-MD states.

The payo� matrix with p = 1:7 and q = 0:4 is used.
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Figure 2: Synchronization of two variables. When

they synchronize in the period of 2 with the inverse

phase, mutual cooperation is attained. Otherwise the

variables stay in transient states or go to MD states.
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B
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Figure 3: Context space plots of DR against all input

bit patterns up to the length 10 are depicted for both

players A and B. A pair of internal models are sequen-

tially listed along the time steps. The model images

in the right column represent the internal model of

player B by player A. Those in the left column rep-

resent the model of player A held by B. Both sets of

images are tending toward Tit fot Tat images, which

are represented by two nodes and two arcs in the last

picture.



between player A and B. By converting their sequences

of moves (

~

x

A

and

~

x

B

) into decimal numbers, we can

obtain the time evolution of the two state variables

x

A

and x

B

. This can be achieved simply by putting

decimal points at the heads of the strings.

Two variables oscillating synchronously in the pe-

riod of 2 but with the inverse phase, will result in play-

ers cooperating with each other( see Fig.2). When the

variables fail to synchronize, however, mutual cooper-

ation is di�cult to obtain. This �nding is con�rmed in

many other cases with di�erent p and q values. How-

ever, the inverse statement does not always hold; i.e.,

players can be cooperating each other without showing

any synchronizations.

To correspond with Fig.2, we depict the time evo-

lution of the internal models of the players in Fig.3. It

is interesting to note that these internal models grad-

ually conform to Tit for Tat images. Because this

period 2 oscillation is one characteristic of the Tit for

Tat strategy, the inverse phase of period 2 synchro-

nization will induce players to have Tit for Tat images

of each other. Once the players arrive at Tit for Tat

images, the optimal strategy is to cooperate, but if

they fail to arrive at Tit for Tat images, they begin

to defect again. When players fail to have Tit for Tat

images, complicated images, which cannot simply be

made correspondence to �nite automata, are obtained.

Fig.4 depicts the overall images that players ulti-

mately have. We indexed the internal models by con-

verting their context network connections to decimal

numbers. Tit for Tat, for example, has the index 768.

The two players do not always come to have the same

internal models. While internal models in MD states

have some common values among their connections ,

those in mutually cooperative states seem to be more

constrained.

3.2 Phase Diagram of World Branchings

Here, we analyze the global structure of the branch-

ings by changing the payo� matrix with the prisoner's

dilemma game conditions. We will determine: 1)how

many possible worlds can be generated, and 2) how

many possible worlds are attracted to non-MD states.

World lines can branch when internal models de-

generate and o�er various possible futures at a given

time. So when a world line branches, it means that

players on that world line cannot decide which option

to play. From the viewpoint of game, the decisions

of the players are dependent on payo� matrix (p; q).

Because players compute their future expectations by

knowing the payo� matrix, they are likely to deviate

from mutual cooperation in high p and high q regions.
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Figure 4: In the model space, MD states are repre-

sented by diamond marks, whereas mutually cooper-

ative states are represented by crosses. The payo�

matrix with p = 1:7 and q = 0:5 is used to draw this

picture.
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Figure 5: The number of branchings (a) and those

attracted to non-MD states (b). Darker regions imply

that there are more branchings (a) or more world lines

tending toward non-MD states(b). Giving the initial

random string of the length 30, we count the number of

branchings until time setp 80. The accuracy � = 0:01

is used to draw the diagram.



If players can exploit others in the future without tak-

ing a big risk (i.e. high p and high q), they are likely to

defect from others rather than cooperate. When they

have Tit for Tat images of their opponents, however,

instant defection is not a wise decision even in those

high p, high q regions. This result is insured by the

prisoner's dilemma condition. We thus can compar-

atively discuss the di�erences in branching patterns

only for the same input strings (e.g. initial strings).

In Fig. 5, the number of branchings and the num-

ber of branches which go to non-MD states are com-

puted as functions of the parameters p and q. From

this phase diagram and the analysis of it we see the

following: 1) Some (p; q) regions have exponentially in-

creasing branchings, 2) Having many branchings does

not imply the existence of many world lines that go

to non-MD states, and, 3) Only some (p; q) regions

have a high number of branchings with many world

lines tending toward non-MD states. It is of interest

that the frequently branching regions are separated

from the others by straight lines in this diagram. This

is reminiscent of the one-memory strategy diagram in

the IPD game (Lindgren and Nordal, 1994). It is possi-

ble that some initial strings (given memory sequences)

can induce only internal models with shorter memory

capacities (for example small size �nite automaton),

while others induce models with longer memory ca-

pacities.

4 Discussions and Future Remarks

We have seen that states of mutual cooperation

are reachable when players are allowed to use slightly

less than optimal models. By computing the possible

world structures around the real world line, we saw

that many world lines that lead to cooperating states

are embedded in it. This result is also a function of

the payo� matrix.

We insist that our study is not merely intended to

have philosophical implications. We believe we can

contribute to the �eld of robotics, in which decision

making and optimization, as addressed in our study,

are major trademarks, both at the hardware and soft-

ware levels(Tani, 1996). We believe that uncertainty

in decision making should also be a central issue in

robotics. We thus can propose one possible test for

measuring the autonomy of a robot without looking

inside the programs.

First, we de�ne autonomy in robots as when they

behave di�erently under the same experiment condi-

tions. In our study, the coexistence of many branches

with di�erent attractors in the possible worlds is taken

as a sign of autonomy. By preparing an environment

which can be translated into the prisoner's dilemma

game, we are able to look into the possible worlds of

the behavior patterns of robots. Possible worlds can

be realized by simply doing the same experiment many

times. Then, based on the branching patterns that

have appeared, we can measure the autonomy of the

robot. This possible world analysis can be taken, so

to speak, as a new kind of Turing test.

( This manuscript is a shorten version of our paper

submitted to the proceedings of the 3rd international

conference on Emergence ( Helsinki, August/1998)).)
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