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Dynamical Behaviors of the Immune Network
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The immune system is a network of antibodies, exhibiting an autonomous behavior even in the
absence of foreign antigens. Taking into account the death and birth processes of antibodies, we
propose here the model of immune network which consists of antibodies and their generated complex-
es. Possible dynamical states and their mutual transitions are investigated by computer simulations,
and are related to some biological natures. The number of different types of antibodies which
constitute the network is estimated.

§1. Introduction

An immune system is a complex adaptive network which can perform various
cognitive functions such as perception, pattern recognition, memory, learning, etc.

A neural system is known as another well-known adaptive network, but underly-
ing dynamics and interactive means are considered to be different. Elements of the
immune network are cells and melecules which are not located on a spatial rigid site
and destroyed or created by their mutual interactions. A mathematical description
of the immune network has started since Jerne”® has proposed a network theory of
the immune system. -

* The main point of his theory is that an immune function is caused by an internal
network of antibodies where each antibody also works as an antigen to other
antibodies. Many experiments® and theoretical models”~'® have been proposed to
verify his theory and to clarify a role of thé network. Most of early theoretical
models aimed to explain several immune functions based on the network theory.
Few of the explanations, however, have been verified by physiological experiments.
Dynamical behaviors of those models, even of the simplest one, are presumed to be
quite complex and difficult to predict. One of recent approaches™? is, thus, to
characterize its dynamical behavior first.

We developed a model for the immune network to investigate the following
characters: 1) Relations between ‘dynamical states and the immune functions. 2)
Effects of a size of the network on the observed dynamical states. 3) Possibility of
a dynamical memory in the immune system. A dynamical memory is expected to be
“completely different from those stored in some proteins or cells. In the next section,
we briefly review the real immune system and Jerne’s network theory.

§ 2. Brief review of the immune system'"'?

and Jerne’s theory

Based on Jerne’s idea, each antibody element (Ab) is known to be connected with
other Ab’s as well as with a foreign body called antigen (Ag). For this, one can
connect Ab; with Ab; provided that an ‘idiotope’ (acceptor) of Ab; contact with a
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‘paratope’ (donor) of Ab.. The idiotope and paratope form a complementary junc-
tion with each other.

When the immune system is invaded by Ag which has an idiotope, Ab having a
matching paratope against Ag is generated. The Ag is linked with Ab and only the
resultant Ag-Ab complex is removed from the system as a foreign element.'”® A large
variety of Ab’s are made in the absence of foreign Ag. By such diversity of paratopes
and idiotopes, the immune system can respond to any kind of Ag.

Not only a specific idiotope but also sufficient quantity of the Ag is necessary to
induce a response.'” A system has positive and negative memory of once invaded
Ag. If a system is invaded by too many or too small numbers of Ag, the system can
no more respond to that Ag. It is called a negative memory or tolerance. If its
secondary response is faster and greater in amplitude than the primary one, the
system has a positive memory of that Ag. Those mechanisms of memory are still
unknown. A positive memory is said to be brought by memory B-cells. A part of
B-cells which have a capacity to generate the Ab’s against the encountered Ag may
live for some months or even years and prepare for the next encounter. These are
called memory B-cells. Judging from the fact that we can develop lifelong immunity,

. some mechanism is needed to excite the system to generate and conserve the constant
amount of memory B-cells.

Ab’s are not only generated when a system is invaded by the foreign Ag. Any
open idiotope of Ab will induce another matching Ab and a cascade reaction takes
place among Ab’s. Dynamical behavior of the immune system is considered to
originate from such an immune response among Ab elements in the internal network.
Our simulation is to uncover such an autonomous behavior in the absence of foreign
Ag.

§3. Description of the model

~ Labelings are made for the idiotope-paratope pair® (X, Y:) of Ab«(i=1, 2, -, P),
where X; and Y; are integers. We assume a cyclic network of size P, that is,

Xi=1, |

Vi=Xi+1 | (3-1)
with a cyclic boundary condition,

Xp=P,

Yr=1. (3-2)

There can be many Ab:’s as a system element of A-type. We assume that Ab.
can interact with Abs-1 or Abs+i, generating linked complexes as follows:

(B, b+ 1)+ (k+1, k+2)> (&, k+2). O (343)

*) Farmer et al.'® have first proposed this representation. They expressed each component by a binary
string and took into account an incomplete matching among elements.
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or
(B, b+ 1)+ (E—1, B)—»(k—1, k+1). (3-4)

Thus generated complex has a combined idiotope-paratope pair, and can further
react with other elements. The reaction rate between the complexes are assumed to
be limited below a certain value, that is, if a generated random number becomes less
than a parameter c, the reaction ceases even if either idiotope matches the other
paratope. Such a parameter c is fixed at 0.001 through our simulation.

In order to simulate the immune function, we will here consider further processes
of sink and source for system elements. If the number ratio of a certain idiotype Y.
to the total elements exceeds a given birth threshold as, we assume that there be
injected an amount s of elementary Ab’s having a complementary paratope, that is,
Xe+1.  In addition to this, one element will be injected for every Ab. at each step. As
to the removal of the resultant complexes, a similar assumption will be made. If the
number ratio of a certain idiotype to the total elements exceeds a given death
threshold a, those complexes will be removed by an amount up to Zb. .

The above processes will be treated by a Monte-Carlo method. Because we do
not have to set up the variables of complexes in advance, MC method is powerful
when a network size becomes large. MC process for this model is as follows. We
have a pool of elements which satisfy (3-1xand (3-2). The above matching rules are
applied to randomly selected pairs of elements. A total amount of system element N
decreases by generating new elements and increases by the birth. Each MC step
consists of ar*N times of this matching rule and the birth/death rules are applied at
each end of the steps.. The parameter a.(=3.0) is fixed through the simulation.

The threshold values @ and @ which satisfy the condition as>a and the
birth/death number 4sz and b are adjustable parameters, which are related to func-
tions of slow reacting cells (e.g., B cells, complement systems, etc.). On the contrary,
the parameters (e and ¢) are related to the rate of generating complexes which is a
fast reaction. The fast reaction rate is of the order of seconds to minutes and the
slow reaction rate is usually of the orders of hours.”® :

Here we will fix the latter two parameters of fast reactions and deal with the
former slow reacting processes. For the simplicity of analysis, a birth threshold is
fixed at es=.5 which means an idiotope is detected as an antigen when its number
ratio to the total elements is more than 50 %. When it is detected, there be injected
elementary Ab’s, 4s=200. Parameters, a» and b, are major adjustable parameters
through the following simulation.

§4. Phenomenology of metastable states

Strength'of interactions (Int.) among Ab’s is assumed to take the following form,
Int. o< [Ab:i][Ab:][goodness of matching], (4-1)

where [Ab;] is the concentration of antibody Ab.. Goodness of matching is a degree
of matching between idiotopes and paratopes of Ab:; and Ab.. The idiotope-paratope



312 T. ITkegami

pair is denoted by integers, and the goodness of matching takes 0 (non-matching) or
1 (perfect matching) in the present model.

Memory of invaded antigens is established by elevatmg the concentration of
corresponding antibodies (Aby). According to Eq. (4-1), the antibody Aby’s which are
not removed with antigens enhance the interaction between Ab; and the anti-Ab:
antibodies (Abs). After the antigens are removed, Aby’s are thus removed by Ab.’s.
The purpose of the present simulation, however, is to seek for the dynamical states

where a large amount of Ab; still survive without being removed by Abs..
’ By adjusting parameters, a network preserves the initial inhomogeneity of a’
certain antibody distribution. For example, one idiotype is rich in numbers and
others are suppressed. After several time steps, the rich idiotype is switched to
~another idiotype (Fig. 1).
A long lasting state with one rich'idiotype is called S state and the other transient
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Fig. 1. Time evolution of number levels for each of the seven idiotopes(p=7) is simultaneously
recorded, where the numbers denote the idiotype of a maximum level in each S state (upper figure)
which is almost periodically switched to the B state associated with a bunch of spikes, for the case
@:=0.5, 2s=200, ;v=0.14 and £=280. The lower figure corresponds to an evolution of the N state

‘which has an equal distribution of every idiotope.
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Fig. 2. Distribution of lifetime of the S state is computed from 50000 time steps after 10000 transients,
for our network with @a=0.5. Tuning parameters (a and %) are depicted on each figure.

state, which is characterized by many successive bursts of idiotopes, is called B state.
These two states are distinguished from their characteristic lifetime.(See Fig.2.)
Since the lifetime distributes over a wide range, if the characteristic lifetime is more
than 10 time steps, we regard it in the S state, and if shorter, it is in the B state.

It is crucial point. of the present simulation that the best immune function will be
achieved in the S state, since it has the following characteristics.
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log((Tj(k)*)

log(k)
‘ (b)
Fig. 3. (a) T(%) vs k& is plotted for each network size. T3(k) is also computed as in Fig. 2.
(b) The logarithm of the maximum numbers of T3{%) with respect to j at each step % is plotted
against the logarithm of % for P=5(T;*(k)oc k™), where the numbers denote the values of j which
give the maximum T3(£).

1) The network is rich in one idiotype (Abs) and other Ab’s are suppressed.
Elementary Abs+1 and Abe-1 cannot increase their numbers because they are com-
bined to complexes by connecting to the Ab.. 2) Rich idiotypes conserve their
number, because the supply of elementary Abx’s to the rich idiotype is just compensat-
ed by generating complexes. 3) The network has a long term memory, although it is
only observed when its size is equal to 5(=P).

By computing transition probabilities between the S states, we find that memory
“of an initial abundant idiotope decays as a power law (Fig. 3). The transition
probabilities are computed as follows.

Each S state is coded by the dominant idiotype of the S state. By numbering
each separated state in order, P.(b) is defined as the probability of observing the b-th
S state with a dominant idiotype @. A’ k-th order transition probability T;(#) from
the n-th S state to the (n+£)-th S state is defined as

T(R)=liml/T 2 31 Pi(n)Pe(n+4), RCE)

where j equals a difference between numbering of idiotype of the #-th and that of the
(n+kE)-th S state (e.g., j=(¢—»)mod P).

The j value that gives the maximum T,(%) with a given £ is marked in Fig. 3(b),
which equals (5—#%) mod 5. Namely, the numbering of idiotype of the #-th S state is
the same as that of paratope in the (#+1)-th S state. In the case P=6, T;(%) takes
two branches. The high value branch corresponds to the even j’s, and the low value
branch to the odd j’s. This will be due to an even parity of P. : .

Usually an S state switches to other S state via B state. 'In addition to these S
and B states, we have an N state (see Fig. 1) which has an equal size distribution of

_every idiotope for even P and two different size distributions for odd P. For a small
network size P(e.g., a few kinds of idiotypes), the network has only two states of S
and B. By increasing P, the irrelevant N state appears more frequently, which is
taken as an irrelevant state for the immune function as it cannot have any memory
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of idiotopes. A long-term memory between the successive S states is truncated by the
appearance of N states.

§ 5. Stability vs network size

The S, B and N states are again quantitatively dlstmgulshed by the following
_averaged entropy:

1f=<—2PilogpP,-> , ‘ : (5-1)

where P;=n;/N; is the number ratio of elementary idiotopes of type (z) to the overall
elementary idiotypes, Ny and <-> denotes time averaging.

Entropies Ir for the S state are expected to be much smaller than those of the N
state, since the S state has one dominant idiotype. The defined entropy Ir takes a
-different value in each S state, but there is a sharp peak in the distribution of s (see
Fig. 4), and we can use a threshold to separate the S state from N state. A different
threshold value is used with respect to a parity of the network size. The entropy Ir
distributes around 1 for odd P’s and takes about 1—logpr2 for even P in the N states.

In the S state, elementary idiotopes are grouped into three classes by their
numbers (F1>F:>F3). (See Fig.5.) There are F1 Ab’s of the same idiotype in Class
1. The number of Ab elements and the number of different idiotopes in Class 2(3) are
denoted by Fix(Fs) and m(n), respectively. The relation [1+m+#=P] holds by
definition. It should be remarked here that Ab. is a prey for Ab.+: and a predator for
Abs_1.  As the result, if Abz: belong to Class 2 (or 1), Abzz+1 must belong to Class 3,
where £ is an integer. Through this process, we may conclude that the possible range
of m is restricted in {0, 1, -+, [(P—2)/2]}, where [x] denotes the maximum integer less
than x. By using these symbols, /- can be written as

I;=— Fi[Flogo(F/F) — mFy[Flog(FolF)— nFs/Flogs(Fs/F) (5-2)

where F'=F+mF;+nF; and values of F, F> and F; are observed to be almost
size-independent.
Such a system can switch to another S state by inducing the B state. The condition
to generate B state from S state can be given by

F1+C() (5.3)
F1+sz+(P 1- m)F3+Pa)

where o is the number of such complexes that remain after the elimination and
satisfies the following condition,

w< a(F+ Pw). _ (5-4)

The death threshold a is set at a value not larger than 1/P, which is the most probable
value for having the S state. It is predicted from Egs. (5-3) and (5-4), that the critical
size (Pc) must be :
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It is also computed as in Fig. 2.
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Fig. 5. The upper and lower figure show time evolution of levels for complex and elementary Ab’s,
respectively. Levels are computed for each idiotype by summing up its paratope. These are the
S states with one element in Class 1 and few in Class 2 (m=2, 3) for the case P="7, a=0.14 and

4o=280.
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Fig. 6. Plotting of the averaged value of the
entropy vs a network size. The cross marks
denote the expected value which are computed
from Eq. (6-1) by using F1=80, ;=10 and F;
=2

__ K &&) )
PC_F3+cu+O(F1’F1 (5-5)

with the approximation Fi>»Fs, F; and

"w, which is confirmed always to hold in

the simulation experiment. The exper-
imental value of I, can be deduced in
case of the parameters, F1=80, F»=10
and F3=2 as shown in Fig. 6, and the
critical value for P. is obtained to be
approximately 10.

The number of different idiotypes
(m) in Class 2 is effected by the network
size P. If P is an even number, each
class tends to develop into a group of
equal quantity and there results in Fi, I
and Fs3, that is, Class 1 disappears even-
tually. The number m can take as large
as P/2 at maximum without frustration
when P is an even number. As the lh.s



Dynamical Behaviors of the Immune Network 319

of Eq. (5-3) is proportional to m™* for large m, the inequality breaks when m exceeds
a certain value. This brings out either S state or N state. In case of an odd P, it can
anticipated that m stays at a small value as also observed in the simulation experi-
ment, and the inequality Eq. (5-3) will be always held.

Even parity of P is reflected in the following characteristics: Transition proba-
bility Ts(%) for even j’s is larger than that for odd ;’s as shown in Fig. 3. N state
consists of two-different-size-distribution of idiotypes, where each size corresponds to
even and odd idiotopes Y.. In other words, we have P/2 different idiotopes in both
Class 2 and in Class 3 for even P. '

§ 6. Discussion and future problems '

The autonomous oscillatory behavior in our model is related to the experimental
observations. An oscillatory phenomenon in the physiological experiments is
examined by injecting the antigen only initially and then measuring the kinetics of
idiotypes that appear. After the primary response, the corresponding idiotope
cyclically appears. A length of cycle is synchronized to the period of about 5~10
days_le),n)

A self-sustained oscillation in a neural network is often said to bear a short-term
memory. - Before the short-term memory decays, a part of short-term memory is
transformed into a long-term memory. Some protein or a plasticity of synapses is
said to be responsible for the long-term memory. A plasticity of synapses is the
mechanism that tunes the efficiency of transmitting signals in the neural network. As
we have stated, memory B-cells are responsible for the long-term memory in the
immune system, but their generation and conservation are not well understood. We
impose these mechanisms on the S state of the network. One suggestion is that a
switching between S states plays a role of a short-term memory in the immune
network and memory transfer to memory B-cells is performed during each S state.

It is considered crucial in our model that a removal of Ag’s is always in a form
of a complex containing Ag and retaining the complexes until they reach a given
threshold. As a result, we have such S states and an autonomous behavior. Exper-
imentally, it is said that Ag-Ab complexes enhance the activity of other cells'® and
engage in generating memory B cells.”?*”

In our model, every idiotope participates in a cyclic behavior in order to keep
memory of one idiotype. A memory in the immune network is thus to excite one loop
including the corresponding paratope rather to excite the single idiotype.
Simultaneous appearance of other idiotopes by injecting one type of Ag is reported in
the physiological experiments.”> Theoretical and experimental interests are thus to
know the number of idiotopes engaged in one immune response. This is, in other
words, to know the size of Jerne’s network, which we have estimated for this cyclic
network. '

A network thus should be modeled in order to contain many loops. It means that
there are antibodies which have a common paratope but a different idiotope and vice
versa. Introducing these antibodies would violate the present picture in several
aspects. We should further insist that the interaction between idiotopes need not be
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perfect. Some incomplete matching in paratopes and idiotopes is allowed, as it is too
difficult to select one completely matched paratope from the tremendous variety of
idiotopes. Such confusion will be relaxed by the incomplete matching, though the
risk of attacking the self-body is also elevated.
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