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Abstract

We are interested in understanding how conflicts for common
resources can be resolved when concurrently selfish agents
are in place. To answer this question, we investigate a many-
core machine that performs concurrent operations. Even with
the selfish and non-cooperative nature of computational pro-
cesses, they successfully organize a whole task. More specif-
ically, we use the almost lock-free (ALF) architecture, which
enables effective concurrent computation on a many-core ma-
chine. A unique point of the ALF is that it performs opera-
tions on shared resources simultaneously without excluding
each other. We conducted data management experiments by
varying the different number of cores on a single machine and
investigating the characteristic dynamics of when the highest
performance is observed. We found that the temporal dynam-
ics of the number of operations changes from noisy to bursty
pattern at the optimal point. In other words, the optimal com-
putation is found at the edge of chaos. We argue that species
or agents that interact concurrently with others show chaotic
behavior in a congestion sate, and the cooperative state is es-
tablished in the chaotic state.

Introduction
From multi-cellular organisms to swarms of birds and
a large ecological system, there is a conflict for com-
mon resources, e.g., food, territories, etc. This type
of conflict can be resolved by introducing temporal
oscillation. When N number of agents can period-
ically access the resource in turn, a happy solution
can be obtained where everybody can share an equal
amount of the source. This periodic behavior is re-
alized as turn-taking behaviors (Iizuka and Ikegami,
2004; Ikegami and Iizuka, 2007). Or the conflict can
be resolved spatially by each agent sticking to its own
niche (i.e., food/territory) without invading space be-
longing to others. This spatial division of niche is often
observed in ecological system and other social systems.

But what happens if agents become selfish and ac-
cess the resource at a time or invade the other niche?
Does it always end up with an unhappy solution where

nobody gets anything? Is it always bad manners to steal
another’s niche? In this paper, we investigate an ar-
tificial system that performs concurrent operations on
many cores to answer these questions. More specifi-
cally, we are interested in understanding how parallel
processing threads cooperatively work together and or-
ganize an entire task. We tackle this problem by having
a new computational framework called “almost lock-
free” (ALF for short), where we let each thread access
a common work space without completely prohibiting
others to access the same work space at the same time.
A small interfering behavior will lead to an optimal be-
havior as we will show below.

ALF, presented here is a new algorithm we have in-
vented for processing data concurrently in a computer
with many cores (Wei and Kato, 2013). Due to the self-
ish and non-cooperative nature of computational pro-
cesses, it usually is difficult to increase the throughput
when performing concurrent operations on many cores.
This is because, in order to maintain consistency of
computation, lock-operations should be performed ev-
ery time an operation accesses the common workspace.
However, these lock operations become overhead and
throughput decreases. Thus, when dealing with con-
current operations or multi-threading computation on
many cores, how to process lock-operations are impor-
tant factors to consider for achieving high throughput.
ALF deals with this issue by permitting the mutual
interference among processors. Using the ALF sys-
tem, we will observe how concurrency causes conges-
tions or conflicts, as well as how mutual cooperation
emerges in such a system.

Almost Lock-Free System
One of the remarkable developments of processor in-
dustry in the last decade is the serial processing speed
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(a) B-tree (order=2) (b) B-tree (order=4) with random keys (c) B-tree (order=4) with sorted keys

Figure 1: (a) An example of how B-tree (of order 2) is constructed. (b) An example of a large B-tree (of order 4)
with randomly distributed key values. Colored space indicates the keys are inserted and uncolored space indicates
the free space. Red node indicates the triggers of split. (c) An example of a large B-tree (of order 4) with ordered
distributed key values.

or clock rate of core. Today, a standard computer
is equipped with multi-core or even many-core pro-
cessors. To make full use of these processors, con-
currency control approaches have been proposed for
writing concurrent programs. Dominant concurrency
control approaches take what is called a pessimistic
approach in which locks are performed every time a
thread accesses the shared space. However, this ex-
tensive lock-based approach limits the concurrency of
operations on multi-cores.

On the other hand, optimistic concurrency control
approaches have been proposed. The optimistic ap-
proach assumes that multiple operations can complete
without affecting each other. When conflict happens,
the committed operations roll back. The optimistic ap-
proach can achieve a high throughput when conflicts
are rare, since operations can complete without the ex-
pense of managing locks and without having opera-
tions wait for other operations’ lock to clear. However,
if conflicts happen often, the cost of restarting oper-
ations hurts performance significantly. ALF takes an
approach that combines the pessimistic and optimistic
concurrency control approaches, which we will explain
in more detail below.

Balanced Tree Data Structure
Many different types of file systems exist such as HFS
for Mac OS, Ext for Linux, NTFS for Windows ma-
chines, ISO 9660 used on DVDs and CDs and so on.
They are different in directory structure, how much
spaces files are allowed to use, what sort of metadata

(about the usual data) is managed. But the basic pur-
pose and architecture of modern file systems are sim-
ilar to each other. In general, their purposes are man-
aging access to the content of both data and the meta-
data available on local and global storage devices. In
particular, a data structure called balanced Tree (B-tree
for short) is used for organizing the indices in current
file systems for efficiency; B-tree supports operations
such as searches, insertions, and deletions in logarith-
mic time efficiency. ALF uses this B-tree data structure
for managing concurrent operations.

B-tree is constrained to have an equal number of
pointing nodes per each node in a data-address tree.
A dynamic way of constructing B-Tree under this con-
straint provides a unique growth of the tree form. For
example, Figure 1 shows how a B-Tree grows for an
input sequence of key values (40, 15, 5, 10, 12). In the
example, each node can contain two values, or order
of 2. A value is inserted into a node in an ascending
order until the node becomes full (step 1 to 3). When
the node is full, it creates two child nodes as depicted
in step 4 taking the median as the parent node. Then it
continues to add a value to the tree in an ascending or-
der. It happens that the tree becomes unbalanced as in
the case of step 5. When this happens, the tree adjusts
itself to make it balanced by moving an adequate value
to its parent node as depicted in step 6. The nodes at the
bottom of the tree are called leaf nodes and the other
nodes are called internal nodes.

Properties on B-tree have been extensively studied
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Figure 2: An example of how B-tree (of order 12)
grows using ALF with three threads.

in the literature and the best-known property of B-
tree is that it uses loge(2) = 69% of spaces in each
node when randomly distributed keys are inserted in
B-tree (Johnson and Dennis, 1989). Examples of large
B-trees are shown in Figure 1-(b) and -(c), with ran-
domly distributed keys insertion and with sorted keys,
respectively. These large B-trees show how leaf nodes
are added or split with time. ALF uses this B-tree data
structure for managing concurrent operations (i.e., in-
sertion, deletion and searches).

ALF on B-tree
ALF takes a hybrid approach which combines opti-
mistic and pessimistic concurrency controls on a B-
tree data structure. More precisely, ALF operates on
optimistic concurrency control and only executes locks
when a certain condition is met. This may cause incon-
sistency during the data management processes. ALF
achieves this by modifying the node in the data struc-
ture and allows many threads to update the same leaf
node simultaneously. A key feature to combine opti-
mistic concept with pessimistic concurrency controls
is that it gives a minimum modification for tree node
structures and concurrency controls. The concept of
ALF is not just about managing the data, but it also
tells us how each agent should behave independently
and cooperatively with a common resource.

More practically, data structure is divided into two
types, public space and private space. Each core op-
erates on private space and interacts with each other
through the public space. Since operations conducted
on private space are not shared on the public space,
other cores cannot see even if some operations can
cause conflicts on the public space. For example, an

insert operation conducted on a private space is not
recognized by other cores until data is merged in the
public space. If we lock the public space every time
an operation affects the public space, or if we have a
global clock, this conflict can be avoided.

Instead, ALF does not perform the lock every time an
operation is performed on the public space, but rather
lets it run until a certain condition is met, allowing
some inconsistency in the data to occur. Without a
global clock or complete lock operation, one may ex-
pect that the system will not self-organize anything due
to the conflicts among private cores. Here we will show
that this is not quite the case but rather it shows better
throughput.

Figure 2 shows an example of how a B-tree grows
with ALF. Here we take three threads as an example.
Each thread corresponds to a core. The tree node struc-
ture is divided into two areas; the public space and the
private space. The ALF adopts the idea of a thread-
local area where threads can write to the private area si-
multaneously, to achieve a partial lock-free status. The
data in the private space will be reflected on the public
space by using exclusive locks when the private space
becomes full. This operation is called reorganization
and it happens when the private space for one thread
becomes full. This reorganization phase is the only
lock phase in the approach, and thus it is called almost
lock-free.

Here, we explain how ALF works on B-tree (of or-
der 12) by following the steps depicted in Figure 2. The
initial node is assigned to private spaces and the same
amount of space is allocated for each thread. Thread
1 is colored in red, thread 2 is colored in yellow and
thread 3 is colored in blue, respectively. In this ex-
ample, we only consider insert operations. We explain
each step below.

1) Keys 1 (thread 1), 6 (thread 2), and 10 (thread 3) are inserted in
each private region.

2) When the key 9 is assigned to thread 1 after inserting the key 2
in the same thread, it detects that the private space for thread 1
is full. This triggers reorganization of the node.

3) When reorganization is triggered, all the operations in the pri-
vate area are reflected on the public area and keys are inserted
in the public area in an ascending order. The remaining space is
distributed equally for each thread.

4) Keys 20 (thread 1), 34 (thread 2), 67 and 32 (thread 3) are in-
serted on the private area. When the key 32 is inserted in thread
3, it triggers the reorganization again.
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Figure 3: Throughput (number of operations executed
per millisecond) when varying the number of cores and
the orders.

5) All the keys in the private regions are inserted into the public
area. However, the public area does not have enough space for
all the keys in the private area. This triggers the node to split.

6) The medium key is taken as a parent node and two children

nodes are created.

Note that private spaces are only allocated at the leaf
nodes and all the internal nodes are allocated as public
spaces.

Experiments
We conducted experiments using the ALF on 64-cores
machine. Here, we only use insertion as operation. The
total number of keys which are randomly manipulated
is 1,000,000 of the range [0, 1000000). The order (i.e.,
the node size) is set to 100, 150, 200, 250 and 300. We
measure the total execution time on manipulating mil-
lion keys by invoking system call 1, and then calculate
the throughput (= number of operations per millisec-
ond).

Best Degrees of “almost”?
Figure 3 shows the results of the throughput. The aver-
age throughput of the five runs is depicted in the figure.
We see that the optimal throughput is obtained when
the number of cores is 16 for all the orders and it de-
creases after that. This is because, although we gain
a lot of concurrency, when the number of threads be-
comes larger, it also triggers a lot of reorganizations

1The system call named CLOCK GETTIME is used.
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Figure 4: Total number of reorganizations and through-
put with different number of cores. The throughput is
maximized at 16 cores and after that the throughput de-
creases as the number of reorganizations increases.

and thus leads to decrease in throughput. For exam-
ple, in the case of 64 cores with the order of 150, only
2 or 3 spaces are allocated for each thread; resulting
in the large number of reorganizations to occur. This
is confirmed in the Figure 4, which plots the number
of reorganizations and the throughput in relation to the
number of cores (the order is set to 150). The num-
ber of reorganizations increases as the number of cores
grows.

Characteristic Dynamics of ALF

A characteristic feature of ALF, comparing with the ex-
tensive locking system, is that a larger number of reor-
ganizations on B-tree can occur at a time as the number
of threads becomes larger. The reorganization occurs
when no space exists for executing operations on any
thread in the private space.

Figure 5 shows the time evolution of the internal
nodes and the free space ratio at each reorganization.
Characteristic dynamics is observed in the stepwise in-
creases of the number of internal nodes. The reorgani-
zation makes new space for each thread to execute the
operations and the number of free space will increase
following the number of internal nodes of a tree. Hav-
ing too many cores leads to frequent reorganization,
slowing down the entire performance.

On the other hand, if it has enough space, many cores
can work concurrently, increasing the entire perfor-
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Figure 5: Dynamics of changes in the ratio of the free
space in the entire B-tree and the increase in the num-
ber of internal nodes.

mance. As we saw in Figure 3, the maximum through-
put is found around when the number of core equals
to 16. If operation load is equally balanced among
concurrently processing threads, the number of possi-
ble operations should be proportional to the number of
cores. But actually, unbalanced operational loads oc-
cur that suppresses the number of operations resulting
in the decrease of throughput.

In Figure 6, the number of leafs and internal nodes
develop differently in time depending on the number
of cores. For the number of cores equal to 4, the num-
ber of leafs shows a convex curve, whereas that of 64
shows the concave and that of 16 is hybrid. For the
number of internal nodes, all the examples show step-
wise development, except that the case of the number
of cores equals to 16, the step size does not grow ge-
ometrically, but rather with some modulations. These
are the pieces of circumstantial evidences that the core
number equal to 16 is at the boundary of two quantita-
tively different dynamics phases.

The singularity of the core = 16 is also reflected in
the time evolution of the free space ratio and the num-
ber of operations. Figure 7 shows the dynamics of the
number of operations and the ratio of free space of the
entire B-tree. The leftmost figure corresponds to the
single core case, and the right most figure corresponds
the case with 64-cores. When the number of cores is
below 16, the possible number of operations over a
course of time is suppressed at a lower value around
100. By further increasing the number of cores, the

(a) cores = 4

(b) cores = 16

(c) cores = 64

Figure 6: Time evolution of the total number of leaf
nodes and internal nodes of the B-tree. The red colored
line shows the total number of internal nodes and the
blue colored line shows the total number of leaf nodes.

number of operations will be raised to around 500 with
bursty time series. The critical core number 16 corre-
sponds to the transition point. To confirm this transi-
tion, we counted the number of local peaks in the time
series of the number of operations 8. We superimpose
all the extracted peak values by changing the number
of cores. We can observe a quantitative transition when
the number of cores is 16.

We can summarize the behavior of the number of op-
erations and of free space as follows.

i) The number of operations can be classified into two
patterns: a noisy time series with lower amplitudes
and a bursty time series with larger amplitudes. The
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Figure 7: Dynamics of the number of operations and the ratio of free space of the entire B-tree. The figures are
shown for cores = 1, 2, 4, 8, 16, 24, 32, 40, 48, 56, and 64 from left to right. The optimal throughput is found at core
= 16 and is colored in grey.

optimal throughput (core = 16) is found at the tran-
sition point of these patterns. An exception is the
single-core case whose time evolution of operations
is similar to the optimal case.

ii) The number of free space on average is proportional
to logarithm of the number of cores.
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Figure 8: Counting the number of local peaks in the
time series of the number of operations, we superim-
pose all the extracted peak values (y-axis) by changing
the number of cores (x-axis). It should be noted that
there is a qualitative transition at the number of cores
equals to 16 (colored in red).

From these observations, we say that the optimal
number of cores for the entire computation is found at
the transition point, which is at the edge of the chaotic
state and the bursty phase.

Discussions
We know several examples showing that the optimal
behavior can be found at the edge of chaos. This paper
adds another example that the optimal computation is
found at the edge of chaos and the bursty behavior. In
our previous work, we have also found that the optimal

throughput of the packet switching network (PSN) at
the edge of chaos and the periodic window (Ikegami
et al., 2011; Takayasu, 2005). In the case of PSN, con-
gestion of packets occurs at the critical point where
the throughput becomes optimal. In an analogy with
PSN, we hypothesize that congestion among different
threads allows the system to perform more operations.

Concurrency causes congestion and congestion lets
a system rearrange the B-tree structure, creating more
free space. That is, with the increase in the size of
free space, effective competition among threads is sup-
pressed. In other words, a mutual cooperation emerges.
A juxtaposition of three unrelated C-terms, concur-
rency, congestion and cooperation is linked by the dy-
namics at the edge of chaos.

A similar discussion can be applied to an ecologi-
cal system’s dynamics. Host and parasite networks or-
ganize a complex food web. With respect to the pop-
ulation dynamics of each species dynamics, we know
that a weak chaos with large degrees of freedom, called
homeochaos (Kaneko and Ikegami, 1992) leads to a
network symbiotic state (i.e., cooperative phenomena).
This chaotic state is attained by auto-tuning dynam-
ics of mutation rates of each species. An initial set of
species self-organizes into this homeo-chaotic state by
increasing the mutation rates.

We believe that the biodiversity of a rainforest pro-
vides such an example. The abundance of each species
in a rainforest is relatively low but many different
species can co-exist in the same place (Connell, 1978).
We argue that congestion of species produces chaotic
dynamics in an ecosystem and they work concurrently.
That is, species or agents that interact concurrently
with others will show chaotic behavior in a conges-
tion sate, and the cooperative state is established in the
chaotic state. The current work provides that the same
principle can be applied in a concurrent computing sys-
tem.
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Conclusion
We proposed a new idea of effective concurrent compu-
tation without using the scheme of extensively locking.
A unique point of this scheme is that all the threads
perform operations simultaneously without excluding
each other. We found that the optimal number of cores
for efficient computation is 16 in our experimental set-
ting. The temporal dynamics of the number of opera-
tions changes from noisy to bursty pattern at the opti-
mal point. We thus insist that the optimal computation
is found at the edge of chaos. The emergence of this
critical point comes from the almost lock scheme.
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