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Inaccessibility in Online Learning of Recurrent Neural Networks
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We apply nonlinear dynamical system techniques to recurrent neural networks. In particular, we
numerically analyze the dynamical system characteristics of the online learning process. By introduc-
ing the notion of inaccessibility, we show that the learning process is well characterized by strong
nonhyperbolicity and inaccessibility, which is a greater uncertainty than chaotic unpredictability. These
results are clearly contrasted with a gradient descent dynamics, or ordinary chaos.
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Learning and adaptation are essential features of
brains, living organisms, social systems, and so forth.
Attempts have also been made to equip artificial systems
with such a learning ability. Although these theoretical
investigations have achieved significant success (see, e.g.,
Ref. [1]), most attention has been paid to rather static
learning aspects such as efficiency, convergence to the
optimal solution, etc. To understand the highly dynamic
phenomena of the realistic learning systems as brains, it
is necessary to analyze the complex dynamics of the
learning process itself, including the cases such that the
efficiency of that process is low or the process does not
eventually converge, as is often the case with real-life
learning systems. The methods used in the study of non-
linear dynamical systems can be effectively utilized for
this purpose. In this work we study the dynamical char-
acteristics in the simplest class of learning systems. That
is, we study the learning process of a recurrent neural
network trained with an online learning algorithm.

A recurrent neural network (RNN) is one of the main
artificial neural network architectures that has feedback
connections [1]. This feature makes the RNN a dynamical
system with external inputs, where the dynamical varia-
bles are the states of the units. A RNN deterministically
transforms an input time series into an output time series.
Suppose a RNN is trained using a deterministic online
learning algorithm. In online learning, connection
weights are sequentially updated, depending on the pre-
vious weights and other ‘‘information’’ extracted from
given training data (e.g., an error covariance matrix in a
Kalman filtering). This stored information is also updated
sequentially. These two updates are determined by spec-
ifying an online learning algorithm. Thus, by regarding
both the weights and the information as new dynamical
variables, a RNN trained by an online learning algorithm
is also a dynamical system with inputs. In this case,
however, teacher signals are also the inputs in addition
to the original input signals in the RNN.
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To clarify dynamical features of the learning process,
we construct a closed dynamical system by taking the
inputs from another dynamical system. We then study the
dynamics of the total learning system. In this Letter, we
examine orbital instability and basin structure (inacces-
sibility), all in cases where a RNN learns a periodic time
series generated by the logistic map. Because such a case
is one of the simplest, it is appropriate to start with. Our
study employs numerical methods because there are no
theoretical methods established for analyzing the dynam-
ics of the online learning of a RNN. As shown later, even
in this simple case, the dynamics is extraordinarily com-
plex and difficult to analyze.

We choose as our RNN a second-order RNN [1]:
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The nonlinear function f is given by f�x� � 1=�1� e�x�.
The state of the ith unit at time t is denoted by yi�t� (i �
1; . . . ; n), the jth external input at time t by uj�t� (j �
1; . . . ; m), and the weights by wijk; wij; w

0
ij; wi. (wijk is the

weight to the ith unit from the jth input and the kth unit.
wij is the weight from the jth input, whereas w0

ij is that
from the jth unit. wi is the bias. The weights wijk, wij, w0

ij,
and wi are represented as w� for convenience.) Also,
certain of the units are assumed to be output units.

In the case of RNNs, learning is the process of making
the output trajectory follow a given desired trajectory by
improving the weights. For an online learning algorithm,
we choose that of real-time recurrent learning (RTRL)
[2]. RTRL is based on the gradient descent of current
output error. The update rule of RTRL is

w��t� � w��t� 1� � "
Xn
i�1

�i�yi�t� � di�t�	vi��t�; (2)
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where " > 0 denotes a learning rate parameter, di�t�
denotes a desired response for yi�t�, and vi��t� denotes
@yi�t�
@w�

jw��w��t�1�. Output units are specified by �i � 1;
otherwise �i � 0. By assuming that the weights are
constant in time, the approximate equation for vi��t� is
derived from differentiating Eq. (1) by w�, yielding
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where si�t� is the net input to the ith unit at time t, and �ia
is the Kronecker delta. As can be seen from Eqs. (1)–(3), a
RNN trained by the RTRL is a dynamical system with
inputs, where the dynamical variables are fyi�t�; w��t�;
vi��t�g and the inputs are fui�t�; di�t�g [3].

It is straightforward to construct a closed dynamical
system by generating the above inputs fui�t�; di�t�g from
another dynamical system. In this work, we use the well-
known logistic map [4], given by

x�t� 1� � ax�t��1� x�t�	 t � 0; 1; 2; . . . ; (4)

where a is the only parameter. In our study, the RNN
performs a one-step prediction of a periodic time series
generated by the logistic map [i.e., u�t� � x�t� and d�t� �
x�t� 1�]. If there is only one unit (n � 1), the obtained
closed dynamical system given by Eqs. (1)–(4) is ten
dimensional, where the dynamical variables are
fx; y1; w111; w11; w

0
11; w1; v

1
111; v

1
11; v

01
11; v

1
1g. We use this

ten-dimensional system throughout the following studies.
First we explore the orbital instability of the learning

system, by using the finite-time Lyapunov exponent [5].
The time-t Lyapunov exponent is the average exponential
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FIG. 1 (color online). Time evolution for the fixed point
learning (a � 0:5). (a) y1�t� and x�t� versus t. (b) The time-1
Lyapunov exponent and its estimate versus t.
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expansion rate along the trajectory of length t. In this
study, we focus on the largest exponent. As shown below,
we find two typical classes of dynamical behaviors.

In the following, all the numerical results are obtained
from the ten-dimensional learning system with the learn-
ing rate " � 0:1. Figure 1(a) shows y1�t� and x�t� versus t
for a � 0:5, where y1�0� and x�0� are randomly chosen
from �0; 1	, whereasw111�0�, w11�0�, w0

11�0�, andw1�0� are
from ��5; 5	. The logistic map at a � 0:5 has a stable
fixed point at x � 0, and thus the task for a RNN is to fit
the output y1�t� to 0. In this example, the learning results
in success with y1�t�’s smooth approach to 0. Figure 1(b)
shows the time-1 Lyapunov exponent versus t, on the same
condition as in Fig. 1(a). (We later explain the estimate
also shown there.) The finite-time Lyapunov exponent is
almost 0, but it oscillates smoothly around t � 700, where
learning progresses substantially [6]. This kind of smooth
dynamical behavior is widely observed for other choices
of conditions, and forms one of the typical dynamical
behaviors in the learning systems.

On the other hand, the other typical dynamical behav-
ior is presented in Fig. 2. Figure 2(a) shows y1�t� and x�t�
versus t for a � 3:835, where the logistic map has a stable
period three orbit. Initial conditions are randomly chosen
as before, and the learning results in success in this
example as well. However, this example shows complex
transient with intermittent behaviors with respect to time.
The transient as a whole appears to be chaotic. However,
many short time intervals are embedded in the transient
as well, where the trajectory appears to be almost peri-
odic. In this case, the finite-time Lyapunov exponent
oscillates around 0 irregularly with intermittent bursts
[Fig. 2(b)]. This result indicates strong nonhyperbolicity
of the dynamical system, because the number of stable
and unstable dimensions is successively varied under the
operation of the dynamics.

So far, we have evaluated the finite-time Lyapunov
exponent of the whole ten-dimensional system. The
smooth behavior as shown in Fig. 1, however, can be
well explained by assuming that the learning system
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FIG. 2 (color online). Time evolution for the period three
learning (a � 3:835). (a) y1�t� and x�t� versus t. (b) The time-1
Lyapunov exponent and its estimate versus t 2 �79 000; 81 000�.
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FIG. 3. (a) Initial weights with success (plotted as black
dots), and (b) V��� versus �, for the period three learning (a �
3:835, T � 106).
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obeys a simple gradient descent dynamics only within
weight space (four-dimensional space, in this case, by
neglecting the other variables). Here, by the term ‘‘gra-
dient descent dynamics,’’ we consider the following:

w �t� 1� � w�t� � "rEtjw�w�t� (5)

where Et is a cost function of variables w, on which
gradient descent is performed with respect to w at time
t. If we consider two nearby orbits, w�t� and w0�t�, then the
evolution of the displacement �w�t� � w0�t� � w�t� is
approximated by �w�t� 1� � �I� "Htjw�w�t���w�t�
where I is the identity matrix and Ht is the Hessian
matrix of Et. Thus, the largest time-1 Lyapunov exponent
of (5) is given by log�1� "��, where � is the smallest
eigenvalue of Htjw�w�t�.

As for the original problem of the ten-dimensional
dynamical system, the cost function at time t is 1

2 �y1�t�
1� � x�t� 1�	2, on which gradient descent is performed
with respect to the weights (i.e.,w111,w11,w0

11, andw1). It
is easy to evaluate the smallest eigenvalue ~� of the
Hessian matrix of this cost function. Thus, if the dynam-
ics of the ten-dimensional map is effectively a gradient
descent dynamics only within four-dimensional weight
space, then the actual finite-time Lyapunov exponent will
well coincide with its estimate log�1� "~��.

Figures 1(b) and 2(b) also show the estimates of the
finite-time Lyapunov exponents based on the above as-
sumption. In Fig. 1(b), the actual finite-time Lyapunov
exponent well coincides with its estimate. Thus, this
learning system can be regarded as simply performing a
gradient descent within the weight space. We expect that
the landscape of the cost function may have one local
minimum, and that its downward slope may consist of an
interval with negative ~� (second derivative) first, fol-
lowed by an interval with a positive one near the bottom,
that corresponds to the positive and negative finite-time
Lyapunov exponents, respectively. In this case, even
though stretching is achieved while the exponent is posi-
tive, folding and mixing do not occur. On the other hand,
in Fig. 2(b), the actual exponent behavior is qualitatively
different from its estimate. Instead of showing strong
nonhyperbolicity, the estimate is almost always 0 or less
(we confirmed that the estimate is slightly less than 0).
Thus, this system does not perform a simple gradient
descent. Indeed, this strong nonhyperbolicity is attribut-
able to the complex motion of vi��t�.

In the two examples above, learning results in success,
but these two types of success (gradient descent and no
gradient descent) should be clearly distinguished. The
qualitative difference in the ways to success can be well
identified by measuring a deviation of a finite-time
Lyapunov exponent from its estimate. From the viewpoint
of dynamical systems, the latter dynamical behavior of
the learning systems is remarkable, exhibiting strong
168101-3
nonhyperbolicity in contrast with simple hyperbolic
chaos or near-hyperbolic chaos [7].

Generally, there are many cases where learning ends in
failure, depending on an initial condition. In the follow-
ing, we study the structure of initial conditions, i.e., basin
structure of the above dynamics, and show how inacces-
sibility is present in the learning process.

Figure 3(a) shows a two-dimensional slice (w111 �
w1 � �5:0) through the four-dimensional initial weight
space for the period three learning (a � 3:835) where
y1�0� � x�0� � 0:3. Each initial condition on a 500�
500 grid is followed until a certain time limit T (106

time steps), where w11�0� and w0
11�0� are given by the

horizontal and vertical axes, respectively. Grid points are
plotted as black dots, for initial conditions from which
learning ends in success. Points are left blank for initial
conditions that do not end in success until T. It shows fine
structure on which initial weights resulting in success and
those in failure are complicatedly interwoven. This im-
plies sensitivity to initial conditions [10].

To rigorously investigate the robustness of the learning
process against unavoidable perturbations (noise, mea-
surement errors, etc.), we focus on the basin boundary
between two sets of initial weights with different fates
(i.e., success or not), and we examine the � dependence of
V���, the four-dimensional volume of the � neighborhood
of the boundary. This V��� is proportional to the proba-
bility of error in determining the final fate, if both of the
following conditions are satisfied: We pick an initial
weight at random in a bounded region containing the
boundary, and our ability to determine the position of
the initial weight has an uncertainty �. Figure 3(b) shows
the numerical results for a � 3:835 and y1�0� � x�0� �
0:3, where V��� is plotted with � with a logarithmic scale
[we evaluate V��� of the region �5 � w��0� � 5]. The
results show that V��� does not depend on �.

The learning process is determined by dynamical
equations. Thus, in normal cases, V��� can be decreased
by decreasing �, even if perturbations of amplitude � are
168101-3



VOLUME 93, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S week ending
15 OCTOBER 2004
added. In other words, the more one improves accuracy,
the better one can follow an ideal learning process (one
without perturbations). Indeed, for a fractal boundary in
general, V��� scales with � as V��� � �! with 0<!< 1
[4], and thus V��� can be decreased to 0 with a power law.
On the other hand, in this special case where V��� does
not depend on � (i.e., ! � 0), an ideal learning process
cannot be approached by decreasing �, as long as pertur-
bations exist (no matter how small). We call this situation
inaccessibility of an ideal learning process.

The following should be noted. First, this newly intro-
duced notion of uncertainty—inaccessibility—is quali-
tatively different from chaotic unpredictability, which
disappears as accuracy improves. Second, the above !
is called the uncertainty exponent [4], and the box-
counting dimension of the boundary is given by N �!,
where N is the space dimensionality. As mentioned al-
ready, !>0 for ordinary fractals, e.g., those constructed
by transient chaos. On the other hand, several known
fractals with !�0 are so extraordinary that this class
contains the Mandelbrot set and geometric representation
of the halting set of a universal Turing machine [13].

Inaccessibility of an ideal learning process is widely
observed in many learning systems, for example, with
other choices of learning rate, periodic time series (e.g.,
period two), the initial value of the network state, or the
initial value of the logistic map. However, there are also
cases where !> 0, i.e., an ideal learning process is
accessible [e.g., for a � 0:5 and y1�0� � x�0� � 0:3].
From the viewpoint of dynamical systems, the extraordi-
nary basin boundary with ! � 0 is based on dynamics
such as that exemplified in Fig. 2, where the finite-time
Lyapunov exponent fluctuates around 0.

In this Letter, we have shown the dynamical system
characteristics of learning systems where a RNN learns a
periodic time series generated by the logistic map with
the RTRL algorithm. Especially, we have shown cases
exhibiting strong nonhyperbolicity and inaccessibility, in
contrast with cases of gradient descent dynamics or with
cases of ordinary chaotic dynamics. In the cases of strong
nonhyperbolicity and inaccessibility, furthermore, we
have found a power law decay of the distribution of
learning times (transient times), although we do not
show it in this Letter. As far as we know, inaccessibility
is always accompanied by this power law decay, together
with strong nonhyperbolicity [13]. Here we should em-
phasize again that it is very difficult to analyze the
dynamical properties, especially inaccessibility (basin
structure), of high-dimensional learning systems. Thus,
to clarify the dynamical features of learning systems, we
have to start with learning systems that are as low-
dimensional as possible, such as our simple model.
Because dynamics turns out extraordinarily singular
even in low-dimensional learning systems, we expect it
168101-4
is naturally so in high-dimensional systems. Indeed, the
characteristics reported here have been widely observed
in other learning systems with different network struc-
tures (e.g., the number of units n > 1), different learning
algorithms (e.g., extended Kalman filtering), and differ-
ent tasks (e.g., the case where RNNs learn each other).

Finally, inaccessibility has been shown to give a char-
acterization of undecidability in computation theory [13].
Based on the present results of inaccessibility, we expect
that learnability is also intrinsically limited as universal
computability. Clarifying potential limitations of learn-
ing will not just deepen our understanding of learning. It
will also be crucial in the understanding of brains, living
organisms, etc., along with clarifying the significance of
the type of learning, such as exemplified in Fig. 2, which
fails to follow an expected learning scheme but results in
success (by somehow utilizing instability, for example).
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